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Abstract

Quantum Dynamical Behaviour in Complex Systems - A Semiclassical Approach

by

Nandini Ananth

Doctor of Philosophy in Chemistry

University of California, Berkeley

Professor William H. Miller, Chair

One of the biggest challenges in Chemical Dynamics is describing the behavior

of complex systems accurately. Classical MD simulations have evolved to a point

where calculations involving thousands of atoms are routinely carried out. Captur-

ing coherence, tunneling and other such quantum effects for these systems,however,

has proven considerably harder.

Semiclassical methods such as the Initial Value Representation (SC-IVR) pro-

vide a practical way to include quantum effects while still utilizing only classical

trajectory information. For smaller systems, this method has been proven to be

most effective, encouraging the hope that it can be extended to deal with a large

number of degrees of freedom. Several variations upon the original idea of the SC-

IVR have been developed to help make these larger calculations more tractable;
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these range from the simplest, classical limit form, the Linearized IVR (LSC-IVR)

to the quantum limit form, the Exact Forward-Backward version (EFB-IVR).

In this thesis a method to tune between these limits is described which allows

us to choose exactly which degrees of freedom we wish to treat in a more quantum

mechanical fashion and to what extent. This formulation is called the Tuning IVR

(TIVR).

We further describe methodology being developed to evaluate the prefactor

term that appears in the IVR formalism. The regular prefactor is composed of

the Monodromy matrices (jacobians of the transformation from initial to finial

coordinates and momenta) which are time evolved using the Hessian. Standard

MD simulations require the potential surfaces and their gradients, but very rarely

is there any information on the second derivative.

We would like to be able to carry out the SC-IVR calculation without this

information too. With this in mind a finite difference scheme to obtain the Hessian

on-the-fly is proposed.

We also apply the IVR formalism to a few problems of current interest. A

method to obtain energy eigenvalues accurately for complex systems is described.

We proposed the use of a semiclassical correction term to a preliminary quantum

calculation using, for instance, a variational approach. This allows us to increase

the accuracy significantly.

Modeling Nonadiabatic dynamics has always been a challenge to classical sim-
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ulations because the multi-state nature of the dynamics cannot be described accu-

rately by the time evolution on a single average surface, as is the classical approach.

We show that using the Meyer-Miller-Stock-Thoss(MMST) representation of the

exact vibronic Hamiltonian in combination with the IVR allows us to accurately

describe dynamics where the non Born-Oppenheimer regime.

One final problem that we address is that of extending this method to the long

time regime. We propose the use of a time independent sampling function in the

Monte Carlo integration over the phase space of initial trajectory conditions. This

allows us to better choose the regions of importance at the various points in time; by

using more trajectories in the important regions, we show that the integration can

be converged much easier. An algorithm based loosely on the methods of Diffusion

Monte Carlo is developed that allows us to carry out this time dependent sampling

in a most efficient manner.

Professor William H. Miller
Dissertation Committee Chair
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Chapter 1

Introduction

I The Semiclassical Idea

The area of chemical dynamics aims at understanding physical processes at both

the macroscopic and the microscopic levels. Classical mechanics (CM) has proven

most effective in simulating the behavior of macroscopic systems; for smaller sys-

tems on the atomic and subatomic scale Quantum Mechanics (QM) provides the

framework to understand and therefore predict various properties.

Semiclassical Theory (SC) has been around almost as long as Quantum Mechan-

ics and for a very good reason. Historically, attempting to understand the new

ideas in quantum mechanics was easiest apporached by finding classical analogues

to quantum concepts. One of the earliest theories to do this was the Wentzel-
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Kramer-Brillouin1–3 theory (WKB), which we will discuss further a little later on.

We know that in some limits - large quantum number, high temperature, or in

dynamic terms if the classical action is much larger than ~ - systems start to be-

have in a classical manner. In a realistic simulation this last mentioned asymptotic

limit is reached quite easily. The action term that is the phase factor of the WKB

wavefunction, for instance, has units of ~ and in the actual exponent appears as a

ratio with ~. When this ratio is large, we see that the oscillations are very rapid

and as a result most properties average out to classical behaviour. For instance,

the smallest atom we simulate is the H atom. The action, as we know, is propor-

tional to the square root of the mass. A H atom has a mass of about 1837 a.u.

(atomic units), so the action will be about 40 times ~(= 1 a.u.).

Keeping this in mind, the Semiclassical approach is, framed as an asymptotic limit

theory and as such is most applicable when the action is several times greater than

~. We keep in mind that while there is a classical limit SC and a quantum limit

SC, taking these limits is not identical to using either individual treatments - the

theory is thus complete in itself and not just a special case.

The SC approach to dynamics provides us with the tools that not only elucidate the

mechanics underlying chemical reactions but also provides a practical approach to
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simulating systems where quantum phenomena such as coherence,tunneling and

zero point energy are of importance. Tbe basic idea is, then, to try and cap-

ture quantum effects using classical correspondence principles. By starting with a

wavefunction with an amplitude and a phase factor(action) and by classically time

evolving these components, we can obtain the information that when interpreted

through the sufficiently non-classical structure of our formalism describes quantum

effects.

I.1 The WKB Theory

The WKB theory is an early SC theory; a wavefunction with an amplitude and a

phase factor that can be expanded in ~ to various orders is defined. By solving

the Schrodinger equation for this wavefunction and using a slowly-varying phase

approximation (which would correspond to the classical limit) we can characterize

the phase and amplitude factors as well as obtaining a quantization condition.

The WKB wavefunction expression is given by

ψ(x) ∝
∑
±

1√
p(x)

e±iS(x)/~.e±iπ/4 (1.1)

The ± sign under the summation limit indicates that we are in fact counting

trajectories that propagate in either direction - tihs means the momentum can be

positive or negative. The momentum p(x) in the Eq. (1.1) is ,

p(x) =

√
2m

~2
(E − V (x)) (1.2)



4

and the action exponent is given by

S(x,E) =

∫ x

p(x′)dx′ (1.3)

The boundary condition here is that the wavefunction exponentially decays to zero

in the classically forbidden region. We note that the momentum p(x) is imaginary

in these regions, thereby causing the wavefunction to go from being oscillatory to

being decaying.

Imposing these boundary conditions leads to the quantization of energy levels.

This is the Bohr Sommerfeld quantization condition4 and takes the form

(
n+

1

2

)
π~ =

∫ x2

x1

p(x)dx (1.4)

where the x1 and x2 are the classical turning points which separate the classi-

cally ’allowed’ and ’forbidden’ regions. This equation can be inverted to find the

eigenvalues.

The multidimensional equivalent of Eq. (1.1) is given by

ψ(x) =
∑

j

∣∣∣∣∂2S(q, E)

∂q∂E

∣∣∣∣ 12 eiS(q,E)/~eiπ/4 (1.5)

The derivation is described in some detail in a review paper by Berry et al.5 The

corresponding multidimensional version6 of the quantization condition has also

been obtained. In this case, a quantum state can be labelled by a vector quantum

number

n = (n1, n2, . . . , nN) (1.6)
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This state comprises of the phase space trajectories of the corresponding classical

system that lie on an N-dimensional invariant toroid with a constant action Ik; the

action here is part of the set of action-angle variables usesd to describe the system.

Ik = (nk + constant)π~ (1.7)

This quantization is referred to as the Einstein-Brillouin-Keller(EBK) condition.7–9

I.2 The Van Vleck Propagator

The Quantum mechanical time propagator e−iĤt/~ describes the evolution in time

of wavefunctions (in the Schrödinger picture) or the operators (in the Heisenberg

picture). The Semiclassical study of dynamics thus begins with crafting a classical-

limit equivalent of this propagator. Van-Vleck10 first proposed the form this might

take, based on his studies of the free particle propagator and the correspondence

principle. This was developed further11 and can be derived as the stationary phase

approximation to the Feynamn Path Integral.12

〈q|e−iĤt/~|q′〉 = (2πi~)−N/2
∑

j

∣∣∣∣Det( ∂qt

∂p0

)∣∣∣∣ 12 eiSj(q,q′,t)/~e−iπνj/2 (1.8)

The prefactor term here is introduced as the second derivative of action, − ∂2Sj

∂q∂q′

which then reduces to the monodromy matrix Mqp in the equation. The Maslov

index νj ensures that we pick the right branch of the square root of the prefactor.

The physical significance of this index was first described by Maslov13,14 as the
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equivalent of the WKB phase acquired across a classical turning point, arising in

this case from an encounter with a caustic point15 in phase space.

The correspondence between classical and quantum mechanics can be seen in the

parallel between classical canonical transformations and unitary transformations

in quantum mechanics. The formalism for the propagator in Eq. (1.8) has also

been derived by Miller,16 from the short time result of a canonical transformation

from old variables (p,q) at time t1 to new variables (P,Q) at time t2; this can

then be extended to a general classical limit expression for matrix elements of the

propagator.

I.3 Gaussian Wavepackets

The Time-Dependent Schrödinger equation has been solved approximately with a

wide variety of Gaussian wavepacket approaches.17 One of the first approxima-

tions was the ‘Thawed’ Gaussian approximation.18 The Ehrenfest theorem tells us

that a Gaussian wavepacket in a harmonic potential will execute periodic motion

while remaining Gaussian; and that the average position and momentum of the

wavepacket follow the classical equations of motion.

It is assumed that with a sufficiently narrow wavepacket and a smooth potential,

the space restriction imposed on the wavepacket will ensure that for the most part

the Gaussian will see only the first few terms of a Taylor expansion in potential
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about the center of the wavepacket. The Gaussian wavepacket is written as

ψt(q) =

(
Re[αt]

π~

)1/4

e−
α
2~ (q−qt)2+ i

~ pt(q−qt)+
i
~ βt (1.9)

The parameters for the Gaussian are allowed to be time dependent; in this equa-

tion, αt is complex and βt is real. The average position and momentum here are qt

and pt respectively. The potential is expanded to second order around the center

of the wavepacket

V (q) ≈ V0 + Vq(q − qt) +
Vqq

2
(q − qt)

2 (1.10)

where Vq and Vqq are the first and second derivatives of the potential with respect

to position.

The Frozen Gaussian Approximation19 was introduced to deal with the non-linear

dependence of (p, q) at time t on the initial conditions of the trajectory that

starts to creep in with longer time simulations. This is treated by expanding

the wavepacket in terms of other gaussians, each centered at a slightly different

position and momentum, so that the volume of phase space around the center

of the individual gaussians where the linear assumption needs to be accurate is

minimized.

ψt(x) =
( ω
π~

)1/4∑
j

cje
− ω

2~ (q−qtj)
2+ i

~ ptj(q−qtj)+
i
~ γtj (1.11)

Neither the FGA nor the TGA require evaluation of the Maslov index or the

prefactor term in Eq. (1.8). The ‘derivation’ of these methods is heuristic rather
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than rigorous.

One last wavepacket method we will mention here is the so-called Cellular approach

to implement the Van Vleck propagator. This method involves Green’s function

propagation of an initial wavefunction from an ensemble of real trajectories without

a root search.

II Thesis Outline

This thesis is aimed at developing methods to accurately study the dynamics of

complex systems. In particular we develop some methodology to make the Semi-

classical Initial Value Representation (SC-IVR) easily extendible to large systems.

We also tackle problems that are typical of complex systems where quantum ef-

fects become important along with ways to deal with nonadiabatic dynamics and

accessing long time dynamics.

We start by describing the SC-IVR and several alternate/approximate forms of

the IVR that have been developed over the years to tackle a variety of situations,

making careful note of the advantages and disadvantages of each. Chapter 2 is

devoted to a review of these existing methods. In Chapter 3 we describe a cor-

rection term for the energy of a system that can bring any approximate Quantum

result closer to the exact value using Semiclassical Green’s functions. Ideally this

method will allow us to accurately determine ,for instance, the vibrational energy
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levels of a polyatomic systems.

In Chapter 4, we examine the role of Monte Carlo methods that are used to

evaluate the IVR propagator and how our choice of a sampling function makes a

difference. We propose an algorithm to use time dependent sampling efficiently to

improve our ability to capture long time dynamics while simultaneously reducing

the number of trajectories required to reach statistical convergence. In Chapter 5,

We use a classical electron model to simulate nonadiabatic dynamics by putting

both the nuclear and electronic coordinates on the same footing. We also compare

the various forms of IVR and rate their relative success.

Chapter 6 is about developing a tuning methodology that allows us to smoothly

transition between the more classical forms of the SC-IVR and the more exact or

‘quantum’ limit of the SC propagator. The freedom to gradually turn on and off

quantum effects for every individual degree of freedom in a large system will make

simulating complex behaviour much simpler.

Finally, in Chapter 7, we describe an ongoing investigation into ways to simplify

calculating the prefactor and tracking the Maslov index. The Hessian is required

by most IVR methods in order to time evolve the Monodromy matrices that appear

in the prefactor. We describe a finite difference scheme in time to calculate this

Hessian on-the-fly so as to make the simulation as simple as any regular Molec-

ular Dynamic (MD) simulation. Chapter 8 ,briefly describes our various results

and a concise summary is made of our attempts to scale the heights of quantum
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dynamical behaviour in complex systems.
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Chapter 2

The Semiclassical Initial Value

Representation(SC-IVR)

I Introduction

This thesis is entirely devoted to the SC-IVR - applying it to different problems;

extending and building on its framework to further its uses; and making its imple-

mentation as efficient as possible. In this chapter, we attempt to cover most of the

existing literature on the IVR in all its various forms. Most of those described here

will be referred to over and over again in the rest of this thesis; some IVR method-

ology that has not been directly used in the work done here has been omitted -

for instance, the very elegant time averaging method. A comprehensive overview

of all the work related to the IVR can be found either in a concise review paper
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highlighting the work done in the Miller group specifically20 or a more general

overview by Thoss and Wang21

Like the cellular approach described in the previous chapter the SC-IVR was de-

veloped as a way to get around the root search problem; the problem arises from

having to identify the initial momentum for a classical trajectory that will enable

it to reach a given final positions in the allotted time starting from a fixed initial

position. This is a non-linear boundary value problem and computationally this

can be done by using shooting algorithm where several trajectories with different

momenta are generated for each initial position and only the ones which reach

the appropriate final position in the given time are chosen to contribute to the

integrand. This is a tedious procedure involving a lot of wasted effort in terms of

the trajectories that are not used.

The original idea of carrying out a canonical transformation to change the variable

of integration from final position to initial momentum within the integral over

the initial position was proposed in the context of the propagator by Miller.22

A similar idea was proposed as a way obtain the S-Matrix semiclassically soon

after.23 More recently several groups have been working on using and extending

this formalism20,24–30
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II The IVR Trick

In this section we illustrate the IVR idea as applied to the time propagator.

The matrix elements of the propagator between two states is a measure of the

probability of a transition between these states.

Consider the transition amplitude between some initial state |ψi〉 and some final

state |ψf〉.

〈ψf |e−iĤt/~|ψi〉 =
∑
traj

∫
dq0

∫
dqt

(
1

2πi~

)N/2

〈ψf |qt〉

∣∣∣∣det( ∂qt

∂p0

)∣∣∣∣− 1
2

eiSt(qt,q0)/~e−iπν/2〈q0|ψi〉 (2.1)

As described before, the sum is over all trajectories that start at position q0 and

end at position qt in time t. We need to find the set of all possible initial momenta

p0 that satisfy the condition

qt(q0,p0) = qt (2.2)

In general, there can be multiple roots for such a problem as show in figure Figure

2.1. The trick now, is to transform the integration over qt to one over p0, within

the q0 integral. The 1D case is shown here for ease of illustration, but this is valid

when the quantities involved are vectors too.

∑
roots

∫
dqt =

∫
dp0

∣∣∣∣∂qt(q0, p0)

∂p0

∣∣∣∣ (2.3)
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Figure 2.1: Non-linear boundary value problem

The Jacobian comes from the change of variable. Figure 2.2 also shows us quite

clearly that integrating over all possible values of qt and adding up the separate

branches is equivalent to integrating over all p0. The expression for the transition

Figure 2.2: Showing the different branches of the function q2(p1)
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amplitude can now be written as,

〈ψf |e−iĤt/~|ψi〉 =

(
1

2πi~

)N/2 ∫
dq0

∫
dp0〈ψf |qt〉∣∣∣∣det( ∂qt

∂p0

)∣∣∣∣ 12 eiSt(q0,p0)/~e−iπν/2〈q0|ψi〉 (2.4)

The expression Eq. (2.4) is merely a variable-changed version of the original Eq. (2.1).

It is, therefore, just as exact with a couple of practical advantages. First, the in-

tegration is now over the phase space of initial conditions. This space can be

effectively sampled by Monte Carlo methods and the classical trajectories drawn

from this space are uniquely determined. Second, the Jacobian term in the trans-

formation in Eq. (2.3) is now in the numerator of our final expression as opposed to

in the denominator as in Eq. (1.8). This means that the zeroes that the Jacobian

may go through no longer cause singularities.

II.1 Herman Kluk IVR (HK-IVR)

The IVR expression in Eq. (2.4) has the disadvantage that there is no obvious

sampling function for the momentum integral. It is possible to derive a similar

expression with initial and final momentum states, but this leaves us with no posi-

tion sampling function. Most wavepackets are localized only in one or the other of

position and momentum. Coherent states31 are uniquely useful in that they mini-

mize the product of the uncertainties in position and momentum (hence the name

minimum uncertainty wavepackets). In other words, coherent states are localized
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in both position and momentum.

Exploiting this fact in the Herman Kluk IVR (HK-IVR),32 an expression for the

time propagator resembling Eq. (2.4) is obtained for coherent states. The origi-

nal derivation was based on the FGA idea, but instead of expanding the initial

wavefunction as a sum of gaussian wavepackets, Herman and Kluk used the over-

complete set of coherent states.

〈ψf |e−iĤt/~|ψi〉 =

(
1

2π~

)N/2 ∫
dq0dp0〈ψf |pt,qt〉Ct(p0,q0)eiSt(p0,q0)/~〈p0,q0|ψi〉(2.5)

The coordinate space wavefunctions of the coherent states are give by

〈x|p,q〉 = ΠN
j=1

(γj

π

)1/4

e−
γj
2

(xj−qj)
2

eipj(xj−qj)/~ (2.6)

The pre-exponential factor Ct is given by

Ct(p0,q0) =

det
[1

2

(
γ

1
2
∂qt

∂q0

γ−
1
2 + γ−

1
2
∂pt

∂p0

γ
1
2 − i~γ

1
2
∂qt

∂p0

γ
1
2 +

i

~
γ−

1
2
∂pt

∂q0

γ−
1
2

)] 1
2

(2.7)

The HK-IVR formulation is further generalized where the coherent state width γ

is different for the initial state |p0,q0〉 and the final state |pt,qt〉.33 In the limit of

γ →∞ the coherent states in Eq. (2.5) reduce to position states and to momentum

states in the limit γ → 0.

There is some debate as to the exact-ness of this HK-IVR. It has been showed that

Filinov smoothing (described later in this manuscript) applied to the Van-Vleck
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IVR Eq. (1.8) actually produces this exact formalism;34 this leads us to believe

that the HK-IVR propagator is non-exact. The many methods to derive the HK-

IVR are reviewed in a somewhat recent article by Deshpande et al.35

However, expressing the propagator by Eq. (2.5) has proved to be very useful in

several practical problems, because this formalism provides us with a good sam-

pling function in the form of the overlap 〈p0,q0|ψi〉 for both the position and

momentum integrals. In practice, we use the square of this function as the sam-

pling function, because this takes the form of a convenient, normalizable gaussian

function - this is the Husimi distribution.

III Correlation Functions

Time Correlation functions prove to be very useful theoretical tools for the calcu-

lation of several physical properties observed spectroscopically or by other mea-

surements.

CAB(t) =
[
e−βĤÂeiĤt/~B̂e−iĤt/~

]
(3.8)

Operators Â and B̂ are chosen depending on the property we wish to study. The

dipole-dipole correlation function, for instance, is obtained by setting Â = B̂ = µ̂

where µ is the transition dipole operator. The Fourier transform of this correlation

function gives us the electronic absorption spectrum. Similarly, the time integral of
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the flux-flux correlation function gives the rate of a chemical reaction. The ability

to evaluate correlation functions like in Eq. (3.8) is, therefore central to any type

of dynamical method.

III.1 Double HK-IVR (DHK-IVR)

Using IVR, the simplest way to evaluate a correlation function is to substitute,

say, the HK-IVR expression Eq. (2.5) for the two propagators in Eq. (3.8).

CAB(t) = (2π~)−2F

∫
dq0

∫
dp0

∫
dq

′

t

∫
dp

′

t C−t(q
′

t,p
′

t; γ
′

o, γ
′

t) Ct(q0,p0; γo, γt)

〈p′

t,q
′

t; γ
′

t| B̂ |pt,qt; γt〉 e
i
~ St(q0,p0) e

i
~ S−t(q′t,p

′
t)

〈p0,q0; γo|Â|p
′

0,q
′

0; γ
′

o〉

(3.9)

where we have used the most general form of the HK-IVR possible, with different

γ values for each of the coherent states.

The trajectories begin at phase space point (p0,q0) and undergo forward time

evolution to the point (pt,qt). At time t there is a ‘jump’ in both position and

momentum

p′
t = pt + ∆p (3.10)

q′t = qt + ∆q (3.11)

This jump is followed by a backward time evolution from initial point (p′
t,q

′
t), also

for a time t, to (p′
0,q

′
0). The path of the classical trajectories needed to evaluate
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this expression is shown in Figure 2.3.

Figure 2.3: Schematic representation of the path described by the classical trajec-
tory in our simulation.

The prefactor for the forward trajectory is the same as the HK-IVR in Eq. (2.7); In

this case we write out the most general form with different coherent state widths

Ct(p0,q0) =

det
[1

2

(
γ

1
2
t

∂qt

∂q0

γ
− 1

2
0 + γ

− 1
2

t

∂pt

∂p0

γ
1
2
0 − i~γ

1
2
t

∂qt

∂p0

γ
1
2
0 +

i

~
γ
− 1

2
t

∂pt

∂q0

γ
− 1

2
0

)] 1
2
(3.12)

The prefactor for the backward trajectory is,

C−t(p
′
t,q

′
t) = (3.13)

det
[1

2

(
γ0′

1
2
∂q′0
∂q′t

γt′−
1
2 + γ0′−

1
2
∂p′

0

∂p′
t

γt′
1
2 − i~γ0′

1
2
∂q′0
∂p′

t

γt′
1
2 +

i

~
γ0′−

1
2
∂p′

0

∂q′t
γt′−

1
2

)] 1
2

The expression in Eq. (3.9) is referred to as the Double Herman-Kluk IVR (DHK-

IVR) and not only involves a double phase space Monte Carlo, but also a poten-

tially very oscillatory integrand. The advantages of this formalism are two-fold.

First and most importantly, the DHK-IVR is semiclassically exact. (We qualify

this statement by saying its as exact as the HK-IVR is taken to be!) Second, in



20

many cases we find that we can write

〈p′
t,q

′
t|B̂|pt,qt〉 = F (q′t,p

′
t,qt,pt)〈p′

t,q
′
t|pt,qt〉 (3.14)

This allows us to use the overlap function of the two coherent states at time t as

sampling function for the jump since

〈p′
t,q

′
t|pt,qt〉 = e−

γt
4

(q′t−qt)2e−
1
4
γt(p′t−pt)2e

i
2
(p′t+pt)(q′t−qt) (3.15)

The real exponents in this overlap are used to sample the Monte Carlo integration

and the imaginary exponent is grouped in with the rest of the integrand.

There are several approximations that can be made to reduce the variables of

integration as well as to smooth out the oscillatory nature of the integrand.

III.2 Exact Forward-Backward IVR (EFB-IVR)

One way to remove the need to evaluate a double phase space integral is the ‘Exact’

Forward-Backward IVR, as described in.36 It is so called, because this expression,

like the Double HK-IVR, involves no approximation other than the basic IVR

description of the propagator.

The EFB-IVR can be described most easily for a case where it is assumed that the

operator B̂ is a function of either momentum operators only or position operators

only. Here, we follow the derivation under the assumption that the operator is a

function of only momentum operator(s).

B̂ = B(p̂) (3.16)
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Consider the DHK-IVR expression described by Eq. (3.9) along with the descrip-

tion of the various terms as described in Eq. (3.12) and Eq. (3.13).

The momentum space matrix of operator B̂ is diagonal (by assumption). This fact

can best be used in evaluating the term 〈p′
t,q

′
t|B̂|pt,qt〉 if the coherent states are

reduced to momentum states. As discussed previously, this can be done by taking

the limit γt → 0 and γt′ → 0

CAB(t) = (2π~)−F

∫
dq0

∫
dp0

∫
dq′t Df

t (q0,p0; γ0) Db
−t(q

′
t,pt, γ0′) B(pt)

e
i
~ St(q0,p0) e

i
~ S−t(q

′
t,pt)e

i
~pt·(q′t−qt) 〈p0,q0; γ0| Â |p′

0,q
′
0; γ0′〉

(3.17)

The operator B̂ acts upon the momentum states obtained in the limit to give us

B(pt)δ(p
′
t−pt). The integral over p′

t can now be carried out, leaving us with only

a integral over the position q′t. The forward and backward prefactors in this same

limit take the form,

Df
t (q0,p0; γ0) =

∣∣∣∣ 1

2
√
π

(
Mf

pp γ
1
2
0 +

i

~
Mf

pq γ
− 1

2
0

)∣∣∣∣1/2

Db
−t(q

′
t,pt, γ

′

o) =

∣∣∣∣ 1

2
√
π

(
γ0′

1
2 Mb

qq +
i

~
γ0′−

1
2 Mb

pq

)∣∣∣∣1/2

(3.18)

The trajectory follows a very similar path to the one described for the DHK-IVR;

the only difference being that there is no longer a momentum jump in any of the

degrees of freedom at time t, only a position jump. One further note here is that

we can sometimes replace the integral over q′t in Eq. (3.17) by an integral over the

position jump ∆q = q′t − qt , a simple change of variable.
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The formulation for the case where operator B̂ is a function of position only, can

be derived in a similar fashion and the resulting expression will involve only a

momentum jump in the trajectories. The prefactors are also modified suitably and

in this case they are of the form

Df
t (q0,p0; γ0) =

∣∣∣∣ 1

2
√
π

(
Mf

qq γ
− 1

2
0 − i~ Mf

qp γ
1
2
0

)∣∣∣∣1/2

Db
−t(q

′
t,pt, γ

′

o) =

∣∣∣∣ 1

2
√
π

(
γ0′−

1
2 Mb

pp − i~ γ0′
1
2 Mb

qp

)∣∣∣∣1/2

(3.19)

While there is no need to evaluate a double phase space integral, it must be noted

that in this formulation for the correlation function, we are left entirely without

a way to sample the q′t. In some cases, this is not a problem, but for a larger

system having to evaluate the multidimensional integral over all the jump degrees

of freedom on a grid can be quite a challenge.

III.3 The Forward Backward (FB-IVR)

The FB-IVR first described elsewhere37,38 is an approximate method to describe

correlation functions unlike the both the DHK-IVR and the EFB-IVR. Despite

this, the FB-IVR is in fact the simplest way to obtain the correlation function

while still capturing coherence effects.

As in the case of the EFB-IVR, operator B̂ is chosen such that involves only

momentum operator(s). The operator is assumed to be in the form of a local
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phase factor

B̂ = eiΦ(p̂) (3.20)

The overall operator involved in the correlation function of the form Eq. (3.8) can

be written as

Û = eiĤt/~eiΦ(p̂)e−iĤt/~ (3.21)

The operator Û is unitary and can be treated as a single time evolution operator

that goes forward to time t and then backward from t→ 0 under a time dependent

Hamiltonian of the form

Ĥ(t′) =


Ĥ − δ(t− t′)Φ(p̂) 0 → t

Ĥ t→ 0

(3.22)

where Ĥ is the original time independent Hamiltonian.

The trajectory starts at (p0,q0) and evolves forward in time under the time inde-

pendent Hamiltonian to (pt,qt). The momentum and position at time t the evolve

in time under the additional time dependent part of the Hamiltonian.

p′
t → pt +

(
∂Φ(p̂)

∂q

)
q=qt

(3.23)

In this case, our choice of the form of operator B̂ makes its derivative with respect

to position zero, so we have no momentum jump, something this FB-IVR formu-

lation has in common with the EFB-IVR. The position jump is also determined
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by the time dependent part of the Hamiltonian,

q′t → qt −
(
∂Φ(p̂)

∂p

)
p=pt

(3.24)

The trajectory is then evolved backward in time under the time independent Hamil-

tonian to (p′
0,q

′
0).

The IVR implementation of Û (which is the time propagator here) is done using

the standard propagator HK-IVR.

Û = (2π~)−F

∫
dp0

∫
dq0C0(p0,q0)eiS0(p0,q0)/~|p′

0,q
′
0〉〈p0,q0| (3.25)

The trajectory follows the path previously described. The action integral here is

given by,

S0(p0,q0) =

∫ t

0

dt′[p.q̇−H(p,q)] + ∆S

+

∫ 0

t

dt′[p.q̇−H(p,q)] (3.26)

where the additional action term is

∆S = −pt.
∂Φ(pt)

∂pt

+ Φ(pt) (3.27)

If Φ(p̂) is a linear function of momentum, the action add-on term vanishes.

The prefactor C0(p0,q0) is the same as the Herman-Kluk prefactor of Eq. (2.7)

with the Monodromy matrices defined for the full trajectory such as,

Mqq =
∂q′0
∂q0

(3.28)
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The FB-IVR correlation function is therefore simply a single phase space average

over initial conditions.

CAB(t) = (2π~)−F

∫
dp0

∫
dq0C0(p0,q0)eiS0(p0,q0)/~〈p0,q0|Â|p′

0,q
′
0〉 (3.29)

The FB-IVR can be shown to come from making a stationary phase approximation

to the DHK-IVR and is an important result that reduces the double phase space

average over initial conditions to a single such average. A number of applications

have shown that the FB-IVR can indeed describe true quantum coherence effects

III.4 LSC-IVR

If one uses the coordinate space IVR, for the two propagators in the correlation

function Eq. (3.8), and then approximates the integrand by expanding all quantities

to first order in the difference of two sets of initial conditions, then the classical

Wigner model39–41 is obtained to be

CAB(t) = (2π~)−F

∫
dp0

∫
dq0Aw(p0,q0)Bw(pt,qt) (3.30)

where Aw and Bw are the Wigner functions corresponding to operators Â and B̂,

respectively, e.g.

Aw(p,q) =

∫
d∆qe−ipT .∆q/~

〈
q +

∆q

2
|Â|q− ∆q

2

〉
, (3.31)

This linearized SC-IVR (LSC-IVR)/classical Wigner model is an old idea and has

been around for a long time; the interest here is seeing that it is contained within
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the SC-IVR, being a (rather crude) approximation to it. (And there are even other,

more recent derivations of the Wigner model from other starting points).42,43 One

sees that it has precisely the form of the classical time correlation function, only

with the classical functions corresponding to operators Â and B̂ replaced by their

Wigner functions.
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Chapter 3

A Semiclassical Correction Term

for Energy Eigenvalues

I Introduction

Establishing the energy spectrum of large molecules is the subject of much work

in theoretical chemistry. Exact quantum mechanical methods can be used only for

systems with very few degrees of freedom as the cost of the calculation scales expo-

nentially with system size. Several approximate quantum methods have therefore,

been developed to tackle this problem. Many of these methods, like the Self-

Consistent Field (SCF) method, are either based on the Variational principle or

some kind of Perturbation theory to different orders. Other approximate meth-

ods to calculate the energy spectrum include semiclassical methods, such as the
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Semiclassical Initial Value Representation (SC-IVR) previously introduced; and

yet other approaches that do not invoke the propagator at all and are more along

the lines of a WKB approximation. These methods have been shown to be quite ef-

fective in obtaining the energy spectrum.44,45 In this chapter we describe a method

to best use the SC-IVR to obtain accurate energy spectra.

One common way to obtain the energy spectrum is by exploiting the relationship

between the spectral density function and the time propagator. The formal repre-

sentation of the spectral density in Quantum Mechanics has delta function peaks

corresponding to the eigenvalues of the Hamiltonian. If we have an eigenvalue

equation

Ĥ|φi〉 = Ei|φi〉 (1.1)

then the spectral density is

ρ(E) =
∑

i

δ(E − Ei) |〈φi|Ψ〉|2 (1.2)

where the strength of the delta function peak is weighted by the overlap of the

chosen reference state with the eigenkets |φi〉.

We can also express the spectral density as a trace,

ρ(E) = 〈Ψ|δ(E − Ĥ)|Ψ〉 (1.3)

where |Ψ〉 is just any reference state.

This delta function (the microcanonical density operator) is related to the real
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time propagator by,

δ(E − Ĥ) =
Re

π~

∫ ∞

0

dt eiEt/~ e−iĤt/~ (1.4)

Combining Eq. (1.4) and Eq. (1.3), we see that the spectral density function ρ(E)

is the half Fourier transform of the survival amplitude 〈Ψ|e−iĤt/~|Ψ〉

The time propagator in Eq. (1.4) can be evaluated by exact quantum mechanical

techniques such as the split-operator method, or the Chebyshev method46 for a

limited system size.

Intuitively, however, given a choice, we would (and quite rightly!) pick to use an

approximate quantum method over a semiclassical one. With this in mind, we

propose a two step process to evaluate energy spectra. As a first step, a QM ap-

proximation can be used to obtain a good estimate of the energies. In the second

step, a correction term that take the existing good estimate and makes it better

is evaluated with semiclassical methods. A closer look at what such a correction

term can accomplish is quite encouraging. Consider a variational quantum ap-

proach such as the Self-Consistent Field method(SCF). The correction term in

this case corresponds to the correlation energy. If this correlation energy is about

10% of the total energy and we assume that the semiclassical calculation captures

up to 90% of this correction term then the accuracy of the overall result has now

been increased to about 1%.
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The idea of such a Semiclassical correction term has been used before,47 in the

context of improving on a Kohn variational calculation for the S-matrix. We will

briefly review this in the Methods section before going on to describe our analogous

approach to obtain an energy correction term. An important point here is that

the correction term is formulated such that the total energy expression is formally

exact and the only approximation introduced is in its evaluation by semiclassical

methods.

II Theory

II.1 SC correction to the S-Matrix

The S-matrix can be written using the Distorted Wave Born Approximation (see,

for instance, see Merzbacher48) as

S(E) = S0(E) +
i

~
[〈φ|Ŵ |φ〉+ 〈φ|Ŵ Ĝ+

0 Ŵ |φ〉

+ 〈φ|Ŵ Ĝ+
0 Ŵ Ĝ+

0 Ŵ |φ〉+ ...] (2.5)

We can separate the Hamiltonian into a so-called ‘Distorted Wave’ (DW) Hamil-

tonian (Ĥ0) and a residual interaction term(Ŵ ). φ(r) is the scattering solution at

energy E

(E − Ĥ0)|φ〉 = 0 (2.6)
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The boundary condition for this solution is that in the asymptotic limit the function

takes the form

φ(r) = −e
−ikr

v
1
2

+
eikr

v
1
2

S0 (2.7)

where, v = ~k
µ

is the asymptotic velocity and µ is the reduced mass.

S0(E) corresponds to this DW solution and the DW Green’s function is

Ĝ0 =
1

E − Ĥ0 + iε
(2.8)

The formal sum of the DW Born Series is well known and gives us

Ĝ+
0 + Ĝ+

0 Ŵ Ĝ+
0 + Ĝ+

0 Ŵ Ĝ+
0 Ŵ Ĝ+

0 + · · · = Ĝ+(E) (2.9)

and

Ĝ+(E) = (E + iε− Ĥ)−1 (2.10)

where Ĝ+(E) the Green’s function for the total Hamiltonian.

We can further use the identity in Eq. (2.6)

Ŵ |φ〉 = (Ŵ + Ĥ0 − E)|φ〉 = (Ĥ − E)|φ〉 (2.11)

Using Eq. (2.8) and Eq. (2.11) putting this in Eq. (2.5) for the S-Matrix, we have

S(E) = S0(E) +
i

~
〈φ|Ĥ − E|φ〉+

i

~
〈(Ĥ − E)φ|G+(E)|(Ĥ − E)φ〉 (2.12)

The most significant thing about this expression is the fact that the total Hamil-

tonian is the only thing that makes an appearance. This tells us that the actual
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choice of DW Hamiltonian and hence the residual interaction component is irrele-

vant. Further, we recognize that the solution to the DW Hamiltonian φ(r) can be

chosen in to be in any convenient approximate form as long as it still obeys the

asymptotic conditions.

The Kohn Variational functional for the S-matrix is defined as the first two terms

of the Eq. (2.12) where φ(r) is the variational trial wavefunction.

SK [φ] = S0(E) +
i

~
〈φ|Ĥ − E|φ〉 (2.13)

The parameters in the variational trial function can be appropriately determined

to ensure an extremum value for the functional SK [φ]. This expression Eq. (2.13)

is, then, the variational solution for the S-Matrix. If φ(r) is the exact scattering

solution such that

(Ĥ − E)|φ〉 = 0 (2.14)

and S0(E) = Sexact then clearly SK [φ] becomes exact too.

In practice, the variational result is, of course, non-exact. The correction term is

the third term on the right of Eq. (2.12)

∆S =
i

~
〈(Ĥ − E)φ|G+(E)|(Ĥ − E)φ〉 (2.15)

At this stage, it is clear that evaluating this correction term and doing so exactly

amounts to solving the Schrödinger equation for the system. The relevant questions
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to ask are if we can obtain an approximate result for this term and if such a result

will prove useful.

We see that Eq. (2.15) contains the Green’s function for the total Hamiltonian.

The Green’s function can be obtained from the time propagator as

G+(E) = (i~)−1

∫ ∞

0

dte−εteiEt/~e−iĤt/~ (2.16)

We note here that the Green’s function G+(E) has a positive superscript because

we have chosen to contour integrate around the poles of the function in the upper

half of the complex plane. In other words, we have picked the form

G+(E) =
1

E − Ĥ + iε

rather than

G−(E) =
1

E − Ĥ − iε

Returning to Eq. (2.16), we see that SC-IVR can jump in here and do its part in

evaluating the propagator. The overall result is therefore a semiclassical correction

to a QM (variational) S-Matrix.

S(E) = SK [φ] + ∆SSC (2.17)

The results of such a calculation have been shown to be good.47 This is ,there-

fore, our inspiration in trying to formulate a semiclassical energy correction to an

approximate QM energy.

E = EQM + ∆ESC (2.18)
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II.2 SC Correction for the Energy

The eigenvalue equation for the energy is

Ĥ|ψ〉 = E|ψ〉 (2.19)

The exact solution to this equation can be obtained by diagonalizing the Hamilto-

nian which would then give us the eigenfunctions and their corresponding eigenen-

ergies. A QM variational approach to this same problem, would start with a guess

for the wavefunction φ and then minimize the energy E[φ] with respect to the

different parameters of the trial wavefunction. We can easily prove that the vari-

ational energy thus calculated always approaches the exact result from above.48

We now wish to re-write this eigenvalue equation as a series expansion of sorts,

where the first term(s) will correspond to the variational (or any other QM) ap-

proximation and the remaining terms form the ‘correction’.

The total Hamiltonian is written as a sum of a perturbative term and a zeroth

order Hamiltonian which has a known, exact solution

Ĥ = Ĥ0 + Ŵ (2.20)

Note that, the trial or ‘guess’ wavefunction (for the variational calculation) is

usually taken to be an eigenstate of such a zeroth order Hamiltonian.

Ĥ0|φ〉 = E0|φ〉 (2.21)
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A projection operator can now be defined for the unperturbed space as P̂ = |φ〉〈φ|.

The inverse space is then defined by Q̂ = 1 − |φ〉〈φ|. Note that the sum of the

projection operator and its inverse defines all space.

P̂ + Q̂ = 1 (2.22)

One other important property of the projection operators we will be using is

P̂ .P̂ = P̂ = P̂+ (2.23)

and

Q̂.Q̂ = Q̂ = Q̂+ (2.24)

We now express the total wavefunction in terms of the projection operators defined

above as

|ψ〉 = (P̂ + Q̂)|ψ〉 = ψP + ψQ (2.25)

where we have defined P̂ |ψ〉 = ψP and Q̂|ψ〉 = ψQ

The eigenvalue equation can now be written as

Ĥ|ψ〉 = Ĥ(P̂ + Q̂)|ψ〉 = E|ψ〉 (2.26)

This equation can be projected into P-space and Q-space respectively, giving us two

equations which can then be solved simultaneously. This is easily accomplished by

operating on both sides of Eq. (2.26) with the corresponding projection operators.
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Using the property described in Eq. (2.23) and Eq. (2.24) and also the definitions

from Eq. (2.25), we get

(P̂ ĤP̂ + P̂ ĤQ̂)|ψ〉 = EP̂ |ψ〉

ĤPPψP + ĤPQψQ = EψP (2.27)

Similarly,

(Q̂ĤP̂ + Q̂ĤQ̂)|ψ〉 = EQ̂|ψ〉

ĤQPψP + ĤQQψQ = EψQ (2.28)

Rearranging Eq. (2.28),

ψQ = (E − ĤQQ)−1ĤQPψP (2.29)

and substituting back into Eq. (2.27), we are left with

ĤPQ(E − ĤQQ)−1ĤQPψP = (E − ĤPP )ψP (2.30)

Moving around the terms in Eq. (2.30), we obtain an expression for energy

EψP = (ĤPP + ĤPQ(E − ĤQQ)−1ĤQP )ψP (2.31)

or, equivalently

E = 〈φ|Ĥ|φ〉+ 〈φ|ĤQ̂(E − ĤQQ)−1Q̂Ĥ|φ〉 (2.32)

The first term in Eq. (2.32) corresponds to a variational result, and the rest of the

expression then becomes the correction term.
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An Unprojected Green’s function The energy expression in Eq. (2.32) involves

a Green’s function (E− ĤQQ)−1 which is the total Green’s function projected into

the space of operator Q̂. We would like an expression that is independent of the

projection operators so that the we are not restricted to any specific choice of φ

and hence Ĥ0 or Ŵ

In trying to find the relationship between the projected and total Green’s function,

we use an operator expansion of the form

(X̂ − Ŷ )−1 = X̂−1 +
∞∑

n=0

X̂−1(Ŷ X̂−1)n (2.33)

The expansion series for the projected Green’s function

(E − Q̂ĤQ̂) =
[
(E − Q̂Ĥ0Q̂)− Q̂Ŵ Q̂)

]−1

= (E − Q̂Ĥ0Q̂)−1 + (2.34)

∞∑
n=0

(E − Q̂Ĥ0Q̂)−1(Q̂Ŵ Q̂)(E − Q̂Ĥ0Q̂)−1

Alternatively, we can use the Brillouin-Wigner perturbation theory49,50 to expand

the projected Green’s function in a similar fashion. We now have,

1

E − ĤQQ

=
Q̂

E − Ĥ0

+
Q̂

E − Ĥ0

Ŵ
Q̂

E − Ĥ0

+ . . . (2.35)
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The correction term is, therefore,

∆E = 〈φ|(Ĥ− < Ĥ >)Q̂

(
Q̂

E − Ĥ0

+
Q̂

E − Ĥ0

Ŵ
Q̂

E − Ĥ0

+ . . . ) (2.36)

Q̂(Ĥ− < Ĥ >)|φ〉 (2.37)

where < Ĥ >= 〈φ|Ĥ|φ〉, the variational result; we have also used the equality

Q̂Ĥ|φ〉 = Q̂(Ĥ− < Ĥ >)|φ〉 (2.38)

and we know that Q̂|φ〉 = 0 since we chose an orthogonal basis. The series to be

summed to infinite order to find ∆E

∆E = ∆E1 + ∆E2 + ∆E3 + . . . (2.39)

By examining the first few terms individually we can identify a pattern that can

then be used to find the infinite order sum.

∆E1 = 〈φ|(Ĥ− < Ĥ >)
Q̂

E − Ĥ0

(Ĥ− < Ĥ >)|φ〉 (2.40)

We explicitly write the unprojected Green’s function as

Q̂

E − Ĥ0

= (E − Ĥ0)
−1 − |φ〉〈φ|

E − E0

(2.41)

and substitute back in the expression for the first correction term in the series and

note that

〈φ|(Ĥ− < Ĥ >)|φ〉 = 0 (2.42)
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This gives us

∆E1 = 〈φ|(Ĥ− < Ĥ >)
1

E − Ĥ0

(Ĥ− < Ĥ >)|φ〉 (2.43)

We find expressions for the second and third term in the series in a similar fashion

∆E2 = 〈φ|(Ĥ− < Ĥ >)Ĝ0Ŵ Ĝ0(Ĥ− < Ĥ >)|φ〉 (2.44)

∆E3 = 〈φ|(Ĥ− < Ĥ >)Ĝ0Ŵ Ĝ0Ŵ Ĝ0(Ĥ− < Ĥ >)|φ〉 − ∆E2
1

E − E0

(2.45)

The sum of these three terms is then

∆E1 + ∆E2 + ∆E3 = 〈φ|(Ĥ− < Ĥ > −∆E1) (2.46)

(Ĝ0 + Ĝ0Ŵ Ĝ0)(Ĥ− < Ĥ > −∆E1)|φ〉

We now begin to see what the higher order terms will be like.

∆E = 〈φ|(Ĥ− < Ĥ > −(∆E1 + ∆E2 + . . . )

(Ĝ0 + Ĝ0Ŵ Ĝ0 + Ĝ0Ŵ Ĝ0Ŵ Ĝ0 + . . . )

(Ĥ− < Ĥ > −(∆E1 + ∆E2 + . . . ))|φ〉 (2.47)

The series involving the zeroth order Green’s functions and the ‘perturbation’ term

Ŵ is the Born series expansion for the unprojected Green’s function of the total

Hamiltonian from Eq. (2.9) The infinite sum for ∆E, using this formal sum of the

DW Born series gives us the final expression for the correction term.

∆E(E) = 〈φ|(Ĥ− < Ĥ > −∆E)G(E)(Ĥ− < Ĥ > −∆E)|φ〉 (2.48)
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This expression is now independent of the way we partition the Hamiltonian. We

can, therefore, choose Ĥ0 to be any convenient part of Ĥ that we then solve by,

say, variational methods. The variational energy is represented by < Ĥ > in

Eq. (2.48) The projection operators are then defined in terms of the subspace of

the variational solutions and the space orthogonal to that.

After all that work, let make on simple check to verify that our expression for the

correction term is exact. The total energy is

E =< Ĥ > +∆E (2.49)

Substituting for ∆E with Eq. (2.48) and using Eq. (2.49) within that, we have

E = < Ĥ > +〈φ|(Ĥ − E)(E − Ĥ)−1(Ĥ − E)|φ〉 (2.50)

= < Ĥ > −〈φ|Ĥ − E|φ〉

= < Ĥ > − < Ĥ > +E

= E

This equation is an Identity.

We can evaluate the Green’s function semiclassically as described before. The final

step in this derivation is to obtain ∆E as a solution to a quadratic equation.

∆E = G22(E) + ∆E2G11(E)− 2∆EG12(E) (2.51)
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where, we define

G11(E) = 〈φ|G(E)|φ〉

G22(E) = 〈φ|(Ĥ− < Ĥ >)G(E)(Ĥ− < Ĥ >)|φ〉

G12(E) = 〈φ|G(E)(Ĥ− < Ĥ >)|φ〉 (2.52)

We can solve this quadratic equation to explicitly obtain ∆E(E)

∆E(E) =
G12 + 1

2
±
√

(G12 + 1
2
)2 −G11G22

G11

(2.53)

The solution is thus obtained graphically by plotting the left and right sides of

Eq. (2.53) or its equivalent equation for the total energy obtained by adding < Ĥ >

to both sides - and finding the point of intersection. The equation which we will

be plotting is thus

E = < Ĥ > +
G12 + 1

2
±
√

(G12 + 1
2
)2 −G11G22

G11

= F (E) (2.54)

III Application

In practice we define the correction term a little differently in order to make the

expression a little less unwieldy. We start with Eq. (2.50) and obtain

∆E = 〈φ|(Ĥ − E)G(E)(Ĥ − E)|φ〉 (3.55)

∆E = E2G11(E)− 2EG12(E) +G22(E) (3.56)
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The modified Green’s functions are now defined as

G11(E) = 〈φ|G(E)|φ〉

G12(E) = 〈φ|ĤG(E)|φ〉

G22(E) = 〈φ|ĤG(E)Ĥ|φ〉 (3.57)

The HK-IVR expression for the propagator (see Chapter 1 for details) is

e−iĤt/~ =

∫
dp0

∫
dq0|pt, qt〉e

i
~ St(q0,p0)Ct(p0, q0)〈p0, q0| (3.58)

Using this in the expression for G11(E) we have

G11(E) =
1

i~

∫ ∞

0

ei(E+iε)t/~〈φ|pt, qt〉e
i
~ St(q0,p0)Ct(p0, q0)〈p0, q0|φ〉 (3.59)

Similarly for the other terms, we have

G12(E) =
1

i~

∫ ∞

0

ei(E+iε)t/~〈φ|Ĥ|pt, qt〉e
i
~ St(q0,p0)Ct(p0, q0)〈p0, q0|φ〉

G22(E) =
1

i~

∫ ∞

0

ei(E+iε)t/~〈φ|Ĥ|pt, qt〉e
i
~ St(q0,p0)Ct(p0, q0)〈p0, q0|Ĥ|φ〉(3.60)

The terms in Eq. (3.60) that do not occur in the expression for G11(E) can be

evaluated analytically. If we assume the most general form of φ to be a coherent

state |pi, qi〉 , we can define two functions f1 and f2 such that

〈φ|Ĥ|p, q〉 = f1(p, q, pi, qi)〈〈φ|||p, q〉〉 (3.61)

〈p, q|Ĥ|φ〉 = f2(p, q, pi, qi)〈〈p, q|||φ〉〉 (3.62)

For the specific examples in this section, we analytically obtain the form of f1 and

f2 and show that these involve no extra effort over and above the calculation of

G11(E).
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III.1 The Anharmonic Oscillator Model

The anharmonic oscillator - a harmonic oscillator with a quartic anharmonicity

has served as a good testing ground for energy calculation methods.51

The potential we use is the form

V =
1

2
mω2x2 + λx4 (3.63)

The QM variational result is again obtained analytically here - we evaluate the

expectation value of the Hamiltonian with a ground state wavefunction (a coherent

state, in this case) and then minimize the energy with respect to the width of the

coherent state. More generally, for a real system, the expectation value will be

calculated by a variational approach such as the SCF method.

〈pi, qi|Ĥ|pi, qi〉 =
γ

4
+

1

4γ
+

3λ

4γ2
(3.64)

where

〈x|pi, qi〉 =
(γ
π

)1/4

e−
γ
2
(x−qi)

2

e
i
~ pi(x−qi) (3.65)

We choose our reference state to be a simple gaussian i.e , a coherent state where

pi = 0

qi = 0 (3.66)

We now minimise Eq. (3.64) with respect to γ

γ3 − γ − 6λ = 0 (3.67)
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The γ value therefore depends on the degree of anharmonicity as described by λ

For the results shown here λ = 1.0 and γ = 2.d0.

We evaluate the correction term for this potential using Eq. (2.53). The terms f1

and f2 from Eq. (3.61) and Eq. (3.62) are calculated and broken down in terms of

the contributions from each of the parts of the Hamiltonian. These equations are

for the most general choice of both the reference state φ and the HK-IVR coherent

states 〈p1, q1|Ĥ|p2, q2〉 The contribution from the kinetic energy term is

KE = −1

2

~2

2m
(−γ

2
+ γ2A2) (3.68)

where,

A =
1

2
(q1 + q2)−

i

2~γ
(p1 − p2) (3.69)

The harmonic contribution is

HO =
1

2
mω2

(
1

2
γ + A2

)
(3.70)

and finally, the quartic contribution is

QO = λ

(
3

4
γ2 +

3

γ
A2 + A4

)
(3.71)

The function f1/2 = KE +HO +QO

The choice of subscript 1 or 2 is decided by our choice of p1, q1 and p2, q2.

f1 is obtained by setting p1 = pi = 0, q1 = qi = 0 and p2 = pt, q2 = qt.
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f2 is obtained by setting p1 = p0, q1 = q0 and p2 = pi = 0, q2 = qi = 0.

III.2 The Quartic Oscillator

We now look at a different and somewhat harder (more anharmonic) case to see

if these problem are recurring. One reason for doing this, is that in the previous

model, the energy correction term itself is very small, making numerical errors

that much more likely to interfere with the result. The potential for this model

problem is

V (x) = λx4 (3.72)

The variational result for this case is

〈pi, qi|Ĥ|pi, qi〉 =
γ

4
+

3λ

4γ2
(3.73)

Minimizing this energy, we have an equation relating γ to the λ value.

1

4
− 6λ

4γ3
= 0 (3.74)

We choose one λ values to study this model λ = 0.7 and γ = 1.6134

The f1 and f2 functions that are part of the modified Green’s functions are the

same as defined previously in Eq. (3.61) and Eq. (3.62), except that we no longer
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have the harmonic contribution to f1/2.

f1/2 = KE +QO (3.75)

where we get KE and QO from Eq. (3.68) and Eq. (3.71).

III.3 The Harmonium Atom - A Two Electron Model

Our last model is a multidimensional one. The harmonium atom is used by theo-

rists as a model of a two electron atom with harmonic potentials and a coupling

term between them.

Ĥ =
−~2

2m

(
∇2

r1
+∇2

r2

)
+

1

2
k
(
r2
1 + r2

2

)
+

1

r12
(3.76)

In sum and difference coordinates R = 1
2
(r1 + r2) and r = r1 − r2

We can re-write the total Hamiltonian as

Ĥ = ĤR + Ĥr (3.77)

where we define

ĤR =
−~2

4m
∇2

R + kR2 (3.78)

and

Ĥr =
−~2

4m
∇2

r + kr2 +
1

r
(3.79)

Note that we are working in atomic units and for the electron ~ = 1 and m = 1
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The Hamiltonian approximates an atom with nuclear charge Z when

k = ω2

ω =
16Z2

9π

The exact ground state energies have been calculated for the Z = 1 case (a H−

atom) and for the Z = 2 case (a He atom).52,53

The ’trial’ wavefunction we use for the variational process is just a gaussian in the

coordinates for both electrons. We also make the change of variables to the r and

R coordinates.

φ0(r1, r2) =
α

π

3/2

e−α(r2
1+r2

2)

= χ(R)ψ(r)

χ(R) =

(
2α

π

)3/4

e−αR2

ψ(r) =
(α
π

)3/4

e−
α
4
r2 (3.80)

The variational results for the harmonium atom are obtained from

〈χ(R)|ĤR|χ(R)〉 =
3

4

(
~2α

m
+
k

α

)
〈ψ(r)|Ĥr|ψ(r)〉 =

3

4

(
~2α

m
+
k

α

)
+

(
2α

π

) 1
2

(3.81)

by minimizing these individual functions with respect to the appropriate α and k

values.
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Once again, we are able to evaluate the modified Green’s functions G12 and G22

analytically.

〈p, q;P,Q|Ĥ|φ0〉 = 〈P,Q|ĤR|χ〉〈p, q|ψ〉+ 〈P,Q|χ〉〈p, q|Ĥr|ψ〉

= F (p, q;P,Q)〈p, q|ψ〉〈P,Q|χ〉 (3.82)

where F (p, q;P,Q) is defined as

F (p, q;P,Q) =
3

2m
.
αγ1

2α + γ1

+
1

(2α + γ1)
2

(
k − α2

m

)
|γ1Q− iP |2 (3.83)

+
3

m

αγ2

α + 2γ2

+
3

2

k

α + 2γ2

+
1

(α + 2γ2)
2

(
k − α2

m

)
|γ2q − ip|2

+
α/2 + γ2

|γ2q − ip|
erf

[
|γ2q − ip|

(α/2 + γ2)
1
2

]
(3.84)

The error function erf is defined here as

I =

∫
d3r

1

r
e−α|r−b|2 (3.85)

=
(π
α

)3/2 1

|b|
erf(

√
α |b|) (3.86)

This expression is rather tedious looking, but computationally simple enough to

incorporate. We note that the 1st part of the expression Eq. (3.83) is entirely

devoted to the center of mass variable R; the rest of the expression is entirely a

function of the difference variable r, Eq. (3.84). This allows us to evaluate the two

factors independently, simplifying the calculation quite a lot.
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IV Discussion

IV.1 Anharmonic Oscillator

The Anharmonic oscillator with λ = 1.0 is the first case we look at. The results are

shown in Figure 3.1, and since we can rescale the Hamiltonian in terms of λ, one

case is considered sufficiently representative of the system. The figures shown here

also have parameters for the harmonic component m = 1 and ω = 1. The reference

state is a coherent state of width γ = 2.0, chosen as described in Eq. (3.67) The

corrected energy is obtained from the graphical intersection of the two sides of our

Identity equation Eq. (2.54). The exact energy for this system is calculated by the
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E
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Figure 3.1: The intersection of F(E) and E for the ε = 0.01 case
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Discrete Variable Representation (DVR) method described in.54

Table 3.1: Results for the anharmonic oscillator with γ = 2 and ε = 0.01

Exact Energy EDV R 0.8038

Variational Energy < Ĥ > 0.8125

Corrected Energy ESC 0.8043

The percentage of the exact correction ∆E that our method captures is thus 88.5%

which is in good agreement with our original guess. The percentage error for the

Corrected Energy is 0.12% as opposed to the percentage error for just the Vari-

ational Energy which is around 1.1% from the values in Table 3.1 Although in

this case, it is clear that we would be quite content with the variational result, we

show that the corrected energy is a factor of 10 more accurate and this would be

a huge improvement for problems that variational methods find harder to deal with.

We would like, now, to take a closer look at the behavior of these functions over a

broader range of energy. (In the previous case we only used a very small window

ranging only±0.5 around the variational energy)) Figure 3.2 shows us an effectively

zoomed out version of Figure 3.1. In Figure 3.2, we see that there appear to be

multiple points of intersection of the two curves, something that was not obvious

when we looked at a narrower window of the Fourier transform. We know that the
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Figure 3.2: The intersection of F(E) and E for the ε = 0.01 case - Figure 3.1 over
a larger energy window

variational result overestimates the exact value, so we are looking for a negative

correction term This allows us to disregard all positive roots and only pick out the

negative roots of Eq. (2.53). In other words, we only look at the values for the

corrected energy that are below the variational energy. But, since our equation is

pseudo-quadratic (where the coefficients are themselves functions of the variable)

we are not entirely surprised to find more than one value, even after eliminating

all options greater than the variational result. This raises the question of how to

choose the ’right’ intersection and how to identify a pattern that we can exploit to

make the right choice consistently.

During the derivation we emphasized that our result, while derived as a correction
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to the variational result, does not make any demands on the accuracy of the

primary calculation. It is, naturally, to our advantage to choose as accurate a

starting point as possible, but as we show in Figure 3.3, we can improve upon any

result by about 10%.

0.6 0.7 0.8 0.9 1
E

0.8

0.9

F(
E

)

γ = 2
γ = 1.5

Figure 3.3: The same as Figure 3.1 but with a bad guess for the ‘variational’
wavefunction with γ = 1.5 and ε = 0.01

In Figure 3.3 we choose to start with a coherent state of width γ = 1.5 which is

clearly not the best variational wavefunction. For this case, the various energy

values obtained are shown in 3.2 (the Exact one is, of course, the same).

Percentage Error here for the variational result is 8.9% and for the SC-Corrected

Energy it is about 1%. We manage to recover almost 90% of the correction term

in this case.



53

There is one other parameter that we need to discuss. The Green’s functions are

calculated from the propagator by

Ĝ(E) =
1

i~

∫ ∞

0

dtei(E+iε)t/~e−iĤt/hbar (4.87)

There is the factor ε that we use in the Fourier transform to dampen the oscillations

(or another way of looking at this factor is that it is used to deal with the poles

of the Green’s function); ideally, ε → 0. In practice, we can choose ε to take on

any value that allows us to smooth out our function and see features better. As
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ε=1

Figure 3.4: Anharmonic oscillator γ = 2 and over a range of ε values. We look to
see how much the accuracy of the calculation is affected by changing these values.

shown in Figure 3.4 we see that by influencing the smoothness of the function over

a given interval, we automatically affect how many times it intersects the energy
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line. In this case, for instance over a range of energies from 0 to the variational

result, only a large (relatively!) value of ε = 1.0 chooses out just one intersection

point. We also note that in Figure 3.4, there is a common point at which all the

curves cross the energy line, but a closer inspection shows Figure 3.5 that what

appears to be the same point is actually a range of value from 0.78−0.802 which is

a sizeable error bar given the magnitude of numbers we are comparing. The most

0.7 0.8 0.9
E

0.7

0.8

0.9

F(
E

)

ε=0.1
ε=0.01
ε=0.001
ε=1

Figure 3.5: Zoomed in version of Figure 3.4

worrying here, is that given that we know the exact result, we would assume that

the smallest value of ε that is in best keeping with our derivation where we look

for the zero limit of this quantity will give the best result. We see that in this case,

at least, the best value is from ε = 0.01 and not ε = 0.001. It also becomes clear
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that since our method is not bound from below by the exact energy. This may

be a problem that is limited to the current case and simply a result of numerical

error in the Fourier transform, but something we need to keep a close watch on as

we analyze the results of the other models.

IV.2 Quartic Oscillator
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Figure 3.6: Energy of a Quartic Oscillator with γ = 1.61 and ε = 0.001.

The Quartic Oscillator model is more challenging problem and we show the results

of λ = 0.7 case in Figure 3.6. The choice of this particular values is somewhat

arbitrary. Again, since we can rescale our coordinates, one example is sufficient to

study the model. For λ = 0.7
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The error percentages for the variational result and the SC-corrected energy are

2% and 0.02% respectively as shown in 3.3. However, the choice of corrected energy

once again involved using multiple epsilon values (shown in Figure 3.7 and 3.8)

and a manual inspection of the graphs to decide which of the many intersection

points was the relevant root. The one improvement over the previous anharmonic

oscillator is that here, the smallest ε value that is still a relatively smooth function

gives us the best result.

On the one hand ,we are beginning to see what might pass for a pattern. The

corrected energy (and therefore more accurate energy) appears to be simply the

point where the two curves intersect that is the closest point lower than the varia-

tional energy. However, this is a somewhat ad-hoc solution though and it is hard

to generalize this in a sensible manner to all systems, without stopping to check!

IV.3 Harmonium Atom

The last model system we look at is the Harmonium Atom. Figure 3.9 shows the

results for the k = 0.25 case; Figure 3.11 for k = 0.32 and Figure 3.13 for k = 5.1.

The Figures 3.10, 3.12, 3.14 zoom in on the point of intersection for the different

ε values. The results are tabulated in 3.4. The last column in this table ∆Er% is

the percentage of the correction term recovered semiclassically.

The various tables and figures all show that our method is quite effective in

obtaining at least a part of the correlation energy for a variational calculation.
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Table 3.2: Results for anharmonic oscillator with γ = 1.5 and ε = 0.01

Variational Energy < Ĥ > 0.875

Corrected Energy ESC 0.812

Table 3.3: Results for the Quartic Oscillator with γ = 1.61 and ε = 0.001

Exact Energy EDV R 0.5931

Variational Energy < Ĥ > 0.6050

Corrected Energy ESC 0.5930

0
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)

ε = 0.001
ε = 0.1
ε = 0.01
ε = 1

Figure 3.7: Quartic oscillator with γ = 1.61 and ε = 0.001 with several ε values.
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Figure 3.8: Figure 3.7 Zoomed in to see intersection point.

Table 3.4: Results for the Harmonium Atom with different k values

k γ EDV R < Ĥ > ESC %Error < Ĥ > % ErrorESC ∆Er%

0.25 0.42 2.00 2.04 2.01 2.00 0.50 75

0.32 0.48 2.23 2.27 2.25 1.79 0.90 50

5.12 2.08 7.92 7.97 7.95 0.63 0.38 40

However, it appears to be very sensitive to the ε value and this may make any type

of automation difficult.
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Figure 3.9: Energy intersection for Harmonium Atom with k=0.25 and ε = 0.001
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Figure 3.10: Harmonium atom of Figure 3.9 zoomed in.

0 1 2 3 4 5
E

-50

0

50

F(
E

)

F(E) 
Energy

Figure 3.11: Energy intersection for Harmonium Atom with k=0.32 and ε = 0.001
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Figure 3.12: Harmonium atom of Figure 3.11 zoomed in.
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Figure 3.13: Energy intersection for Harmonium Atom with k=5.1 and ε = 0.01
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Figure 3.14: Harmonium Atom of Figure 3.13 zoomed in.
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Chapter 4

Accessing Metastable States and

Long Time Dynamics - Time

Dependent Monte Carlo Sampling

I Introduction

In a previous chapter, the various form of the IVR have been described. In the

most popular form, the HK-IVR the sampling function to carry out the monte

carlo integration over initial trajectory conditions is the Husimi distribution. This

distribution is just the modulus square of the overlap of two coherent states - the

reference state with the coherent state of initial conditions -

The simulation of long time dynamics or being able to describe rare events accu-
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rately is quite a challenge to all dynamical methods. The IVR is no different -

as we go to longer time scales a lot of noise starts to make an appearance in, for

example, a energy spectrum calculation. One way to reduce the noise is to simply

run a larger and larger number of trajectories to makes sure that even the rare

events are well represented in the average statistics. This solution, while effective

in some case, can become far too cumbersome and expensive.

In this chapter, we describe a time dependent sampling that is a potential alter-

nate solution to the problem of long time dynamics. This method is inspired55 by

Diffusion Monte Carlo and the log derivative56 method to a certain extent. The

method is applied to the problem of metastable states of ozone and also some long

time water simulations.55

II Theory

The Log-derivative algorithm was first used to solve multichannel scattering equa-

tions57 and later modified and used by other groups to solve inelastic and reactive

scattering problems.58–60 A log-derivative formalism for the semiclassical prefactor

has also been described and we will discuss it in further detail in a later chapter

6 In the current context, the log-derivative procedure is the inspiration for the
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implementation of a time-dependent Monte Carlo sampling scheme.

Consider an autocorrelation function, with the HK-IVR expression for the propa-

gator.

A(t) =

(
1

2π~

)N ∫
dp0

∫
dq0Ct(p0,q0)eiSt(p0,q0)/~〈ψi|pt,qt〉〈p0,q0|ψi〉 (2.1)

The standard sampling function is the time-independent Husimi distribution wH

described already in Eq. (2.2). In this section we refer to this as our zero-time

sampling function.

w0(p0,q0) = 〈ψi|p0,q0〉〈p0,q0|ψi〉 (2.2)

The integral can now be represented as

A(t) = N0 〈Ae(p0,q0; t)〉w0(p0,q0) (2.3)

where

Ae(p0,q0; t) =

(
1

2π~

)N

Ct(p0,q0)eiSt(p0,q0)/~ 〈ψi|pt,qt〉
〈p0,q0|ψi〉

(2.4)

and the normalization constant is

N0 =

∫
dp0

∫
dq0w0(p0,q0) (2.5)

The Monte Carlo estimator here Ae is the oscillatory term that is at the center

of the ‘sign’ problem and leads to slow convergence of the integrand especially at

longer times.

The idea here is that the region of phase space that is most important is constantly

changing as the system evolves in time. We propose the use of a time dependent
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sampling function55 It is usually easier to use a sampling functions that is real and

positive, so keeping this in mind, we choose suitable parts of the integrand.

We assume here that the reference state ψi is of the form

〈q|ψi〉 =
{γi

π

}1/4

e−
γi
2

(q−qi)
2

(2.6)

We now look at the product of the overlap of the reference state with the initial

coherent state and its overlap with the final coherent state at time t.

〈ψi|pt,qt〉〈p0,q0|ψi〉 = (γiγ)
1
2

(
2

γi + γ

)
e
− γiγ

2(γi+γ)
(q0−qi)

2

e
− 1

2~2(γi+γ)
p0

2− γiγ

2(γi+γ)
(qt−qi)

2− 1
2~2(γi+γ)

pt
2

eiφt

= wt(p0,q0; t)eiφ (2.7)

The function wt is thus the time dependent sampling function. The phase of the

above expression is grouped with the rest of the integrand and is of the form

φt(p0,q0) =
γi

~(γi + γ)
[−pt.(qt − qi) + p0.(q0 − qi)] (2.8)

The need for such a time dependent sampling function becomes clear in cases where

the overlap between the sampling function w0 and the one at time t, wt is minimal.

This clearly will lead to poor sampling at long times and makes it proportionally

hard to obtain a converged result for the integrand.

We are now faced with two practical questions in the implementation of the sam-

pling function defined in Eq. (2.7). First, we need to be able to normalize the
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function wt before it can be used as a sampling function in the integration.

N(t) =

∫
dp0

∫
dq0 wt(p0,q0) (2.9)

Second, an efficient scheme to implement this potentially problematic time depen-

dent sampling must be described.

II.1 The Normalization Constant

The normalization constant here is

N(t) =

∫
dq0

∫
dp0wt(p0,q0) (2.10)

Clearly, this is a non-trivial integration since wt is a function of time evolved

momentum and position (pt,qt).

Using a log-derivative type methodology here seems to be the right approach. One

way is to evaluate the correlation function itself in this manner.

˙A(t)

A(t)
=

〈
Ȧe(p0,q0; t)

〉
wt

〈Ae(p0,q0; t)〉wt

(2.11)

The angular brackets indicate the estimator and the subscript to the brackets

defines the sampling function which is used to Monte Carlo integrate over the

estimator.

Since the LHS of Eq. (2.11) is the time derivative of the log of the correlation

function, the solution for A(t) is given by,

A(t) = A(0)e
R t
0 dt′ Ȧ(t′)

A(t′) (2.12)
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The drawback with taking this approach is that both A(t) and Ȧ(t) are compli-

cated, involving the evaluation of Monodromy matrices.

The other way to approach this problem is to evaluate the Normalization constant

using the log-derivative method. This gives us our sampling function at different

times.

Ṅ(t) =

∫
dp0

∫
dq0ẇt(p0,q0) (2.13)

where, from Eq. (2.7) we can easily see that

ẇt(p0,q0) =

[
− γiγ

m(γi + γ)
pt.(qt − qi) +

(
1

γi + γ

)
∂V

∂qt

.pt

]
wt(p0,q0)

= ft(p0,q0) .wt(p0,q0) (2.14)

From Eq. (2.14) and Eq. (2.10), we now have

Ṅ(t) =

∫
dp0

∫
dq0ftwt (2.15)

This means that the Ṅ(t)
N(t)

using Eq. (2.15) and Eq. (2.10)

Ṅ(t)

N(t)
= 〈ft〉wt

(2.16)

It is possible to obtain the normalization constant from Eq. (2.16) from the fact

that the left hand side is the time derivative of the log of the normalization con-

stant.

N(t) = (2π~)N/2e
R t
0

Ṅ(t′)
N(t′)dt′

(2.17)
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II.2 The Sampling Function

The actual sampling function in its normalized form is

ρtp0,q0 =
wt(p0,q0)

Nt(p0,q0)
(2.18)

The fact that our sampling function changes in time, is just another way of say-

ing that the we wish to vary the importance of the different phase space points

generated at time zero.

We look closely at the way this sampling function evolves in time.

ρ̇t =

(
ẇt

wt

− Ṅt

Nt

)
ρt

=

(
ft −

Ṅt

Nt

)
ρt (2.19)

This equation resembles very closely the Diffusion Monte Carlo equation, which

describes the time evolution of the wavefunction as,

∂ψ(x)

∂s
= [D∇− (V (x)− E0)]ψ(x) (2.20)

The kinetic part of this equation is described by the diffusion process and the

potential part by the auto-catalysis process.

In drawing the parallel between Eq. (2.19) and Eq. (2.20) it becomes clear that

the sampling function does not have a diffusion term. This means that once the

initial ensemble(p0,q0) is generated as per the sampling function ρ0(p0,q0). The

actual set of points remains unchanged, but the population of trajectories at each

of these points does change
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We further note that in Eq. (2.19) while we know the function ft, the remaining

part of the equation Ṅ(t)
N(t)

is not known apriori. If we use just ft to evolve the

equation, the number of trajectories in no longer preserved and will be different

for different times. In order to conserve the number of trajectories we follow a two

step process.

First, we do a rough trajectory evolution from 0 to time t and calculate the nor-

malization constant from this run. This leads to our second step, which is to now

do a full scale calculation of the correlation function with Monodromy matrices

thrown in as well. At every time step (these can be pretty far apart and need not

correspond to the trajectory time steps), we can use an appropriate function to

describe the relative importance of the various phase space points, which in turn

determine how many trajectories contribute from each point of the initial ensemble

and which points do not contribute at all.

II.3 The Sampling Algorithm

The sampling function evolves in time according to Eq. (2.19). The expression for

ρ(t) becomes

ρ(t) = ρ(0)e
R t
0 (ft′−

Ṅ(t′)
N(t′)dt′

(2.21)

As stated before, ft is known. We do a preliminary run to determine this part

of the equation and then use it to weight the individual phase space points and
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decide which regions are to be made more important and which ones less. We wish

to follow these changes as best we can, without having the calculation become

too tedious. As discussed before, there is no ‘diffusion’ term so we introduce an

artificial shake term time that allows us to generate an extra point in an ‘important’

neighborhood while eliminating points that are in less important regions thereby

preserving the total number of points in time.

To make this clearer, we describe a sampling algorithm that it carried out after

the first purely classical run.

Step 1 :

At the ith time step, for each point (p0,q0) in the sampling set we evaluate an

importance function of the form

K(p0,q0) = e(〈ft〉wt
) (2.22)

Step 2:

In this step we wish to translate the importance of a point, into an actual increase

in the number of points in its neighborhood that will contribute to the integrand.

The number of points that should be in this region is calculated as int(K − 1)

where we subtract one to account for the existing point. We note here that int(K)

gives us the nearest smaller integer.
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The probability of increasing the number of points in this vicinity is then,

u = K − int(K) (2.23)

If we are increasing the number of points, we also need a probability of eliminating

points. In this case, it is clear that we wish to eliminate points where K < 1 with

a probability of 1−K.

Step 3 : Since we have already calculated the normalization factor, we now use

this set of points (p0,q0) and do a regular Monte Carlo walk around each of these

with wt as the weight function.

We then repeat these steps for as many time steps as we are looking at. This

calculation can be carried out a coarser grid than we would normally do, since the

time steps where we stop and evaluate the correlation function can typically be

bigger than the trajectory time steps.

III Applications

III.1 1D Ozone

The Ozone potential we model is an 1D PES which was developed to study the

energy levels of metastable states of ozone near dissociation.61 The potential is of

the form,

V (r) = V0(1− e−α(r−r0))2 +
~2J(J + 1)

2µr2
(3.24)
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The first part of the potential is a simple Morse potential and the second term is a

centrifugal term where we can choose the angular momentum level to be studied.

In this case, we use the parameters for

V0 = 1.132eV

α = 2a.u.

r0 = 2.4a.u.

The initial state is chosen to be a gaussian centered at the top of the dissociation

barrier with x0 = 4.64 a.u. and γ = 4

III.2 Water

A 3D test of this method was carried out by Yimin55 with a model of the water

molecule in normal coordinates. The water potential is a PJT2 potential developed

by Polyansky et al.62

IV Discussion

We have already stated that the reason time dependent sampling is necessary is

because as the sample set evolves in time, we find that it is restricting to use the

zero time sampling function and very often the overlap of the important regions

at time t and time zero is not good. In a series of Figures 4.1(a) -4.1(f) we show

importance maps of the sampling function. It becomes clear that the important
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regions are spreading - in other words a single gaussian centered at initial conditions

is no longer sufficient.

The figures show the most important regions in red and as time progresses we

can see how this one two-dimensional gaussian region splits into several different

regions of importance. The results of the autocorrelation function for the 1D ozone

potential are plotted in figures 4.1 and 4.2 which contain the real and imaginary

parts of the function respectively We see that the HK-IVR with regular sampling

does quite well in this case, however at longer times it takes fewer trajectories to

converge our time dependent sampling IVR. In the results shown, 360000 trajec-

tories were used to achieve the regular result, where only 3600 were required for

our technique.

We also show in Figure 4.3 the exact and calculated (by log derivative) normaliza-

tion constant for this example and show that there is a good agreement between

these two results. Similarly for the water model the normalization constant is

shown in Figure 4.4 and the real and imaginary parts of the autocorrelation func-

tion are shown in Figure 4.5 and 4.6 respectively. We see that although there is not

much to choose between the two methods initially, but at longer times it becomes

evident that time dependent sampling is far more efficient. Also, equally impor-

tantly, we used much fewer trajectories for the time dependent method - 50,000 as

opposed to 500,000 for the regular sampling.



76

(a) Sampling function at time 0 a.u (b) Sampling function at time 20 a.u.

(c) Sampling function at time 30 a.u. (d) Sampling function at time 50 a.u.

(e) Sampling function at time 70 a.u. (f) Sampling function at time 90 a.u.
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Figure 4.1: Real part of autocorrelation function for Ozone. The dashed line rep-
resents the regular SC-IVR calculation and the time dependent sampling method
is the full line

Figure 4.2: Imaginary part of autocorrelation function for Ozone. The dashed
line represents the regular SC-IVR calculation and the time dependent sampling
method is the full line
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Figure 4.3: The Normalization constant is obtained exactly (full line) or with the
Log-Derivative method.

Figure 4.4: The Normalization constant is obtained exactly (full line) or with the
Log-Derivative method (dashed line).
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Figure 4.5: Imaginary part of the autocorrelation function for the 3D model of
water. The dashed line is the regular sampling method and the full line is time
dependent sampling.

Figure 4.6: Real part of autocorrelation function for the 3D model of water. The
dashed line is the regular sampling method and the full line is the time dependent
sampling.
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Chapter 5

Semiclassical Approach to

Nonadiabatic Dynamics

I Introduction

Classical molecular dynamics (MD) simulations are the most common and gen-

erally applicable way to describe dynamical processes in large molecular systems.

When electronically non-adiabatic processes are involved (those that involve tran-

sitions between different Born-Oppenheimer (BO) potential energy surfaces) it is

natural to try to generalize MD simulations to deal with them. This has led to

a variety of mixed quantum-classical (QC) models, where the electronic degrees

of freedom are treated quantum mechanically via an electronic wavefunction de-

termined by the time-dependent Schroedinger equation, and the nuclear degrees
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of freedom (dof) classically as numerically computed classical trajectories. The

time dependence for the electronic dof comes from the dependence of the potential

energy surfaces and their couplings on the nuclear coordinates, which vary with

time along classical trajectories.

The various mixed QC models differ primarily in the forces, or equivalently the

effective potential surfaces that determine the classical motion of the nuclei. Most

such approaches can be classified as either Ehrenfest (mean field) models or surface-

hopping models. Tully63 has given an excellent discussion of the differences of

these two approaches as well as the strengths and weaknesses of each. Briefly,

in Ehrenfest models one computes the force on the nuclei by averaging the elec-

tronic potential surface (matrix) using the instantaneous electronic wave function,

while in surface hopping approaches the force is determined from one (adiabatic)

potential surface or another, with instantaneous hops between different adiabatic

surfaces permitted according to some hopping algorithm.

A positive feature of the Ehrenfest model is that it is a well defined approximation,

while surface-hopping models have a number of ad hoc features which, though

physically reasonable, may be difficult to justify. A significant shortcoming of the

Ehrenfest model is that the nuclear trajectories are determined by the average

PES even in the asymptotic region of a scattering problem, where the nuclear

trajectories should, of course, be determined by one PES or another depending on

the electronic state. The mean field aspect of the Ehrenfest model is not able to
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describe this correlation.

A significant contribution to the theory was made by Neria and Nitzan64 in point-

ing out that the failure of these mixed QC models results from the fact that the

nuclear dof are not described by a wavefunction, but only as classical trajectories.

Though their analysis was based only on the Golden Rule (lowest order perturba-

tion theory), it correctly identified the problem and suggested some ways to try

to overcome it, for instance, by assigning a Gaussian wavepacket (nuclear wave-

function) to the classical trajectories of the nuclei. Rossky et al65 picked up on

this idea and made good use of it, and more recently Truhlar et al66 have also

used it to construct more refined surface hopping models. (Both of these groups

have focused on determining a decoherence times for the nuclear wavefunction to

collapse to one electronic PES or another.)

The initial value representation (IVR) of semiclassical (SC) theory20,36 provides a

natural and correct description of electronically non-adiabatic processes. This is

perhaps not surprising since the nuclear (and electronic) dof do have a wavefunction

in the SC description. It is interesting, though, that the equations of motion that

determine the nuclear trajectories are precisely the Ehrenfest equations, but by

processing the trajectories though SC theory, the nuclear motion emerges (in a

scattering problem, as the present examples are) on one PES or another, not on

the average PES.
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To apply SC theory to a vibronic system (one with electronic and nuclear dof),

we use the Meyer-Miller-Stock-Thoss(MM-ST) classical analog model for the elec-

tronic degrees of freedom. This replaces the N electronic states involved in the

process by N classical degrees of freedom, specifically a harmonic oscillator for

each electronic state. All dof — those of the nuclei and those of the N ‘electronic’

oscillators — are then treated semiclassically via the IVR methodology (involving

trajectories computed in the full coordinate and momentum space of nuclear and

‘electronic’ dof). Though MM67 developed this classical model for the electronic

degrees of freedom as an approximate way to be able to treat electronic and nuclear

dynamics on a equal footing, the more recent derivation of the model by Stock and

Thoss (ST)68 shows that it is actually not a model (i.e approximation), but rather

an exact representation of the full vibronic system. In other words, if one were to

take the MM-ST vibronic Hamiltonian and implement it quantum mechanically,

the exact vibronic dynamics would be obtained. The only approximation here is

that it is implemented semiclassically via the IVR.

It has been previously shown that69 the approach described above captured trans-

mission probabilities accurately for Tully’s63 three model systems. In this paper

we further show that the IVR and some of its variations can indeed provide a com-

plete dynamical picture of nonadiabatic systems both in terms of instantaneous

populations of states as well as the quantum coherences between them. In the

theory section, we first gives a brief summary of the Ehrenfest method, followed
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with an introduction to the MM-ST description of the electronic-nuclear system,

We utilize the Forward-Backward(FB) version of the IVR approach, which makes

the calculations efficient and yet retains the ability to describe quantum coherence

effects correctly. As seen in the examples treated in Section IV, if one makes the

cruder linearized approximation to the SC-IVR (which reduces to the classical

Wigner model), one loses the ability to describe coherence; the results of this

linearized, or LSC-IVR approximation become essentially those of the traditional

Ehrenfest model, with the nuclear trajectory emerging (incorrectly) on the average

of the electronic PES’s. With the more rigorous FB-IVR, however, the nuclear

trajectory emerges on one potential energy surface or the other.

II Theory

II.1 The Ehrenfest Method

The Ehrenfest method takes a mean field approach to nuclear time evolution. It is

assumed that we can separate the wavefunction into a fast moving electronic part

and a slow-moving nuclear part.

ψ(r,R; t) = ψ1(r; t).ψ2(R; t) (2.1)

We can now write down the time dependent Schroödinger equation for the indi-
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vidual wavefunctions as

[
− ~2

2µr

∇2
r + V eff

1 (r; t)

]
ψ1(r, t) = i~

∂ψ1(r; t)

∂t
(2.2)[

− ~2

2µR

∇2
R + V eff

2 (R; t)

]
ψ2(R, t) = i~

∂ψ2(R; t)

∂t
(2.3)

The effective potential energy surfaces are average fields integrated over either r

or R depending on which one we are looking at.

V eff
1 (r; t) = 〈ψ2(R; t)|V (r,R)|ψ2(R; t)〉R (2.4)

V eff
2 (R; t) = 〈ψ1(r; t)|V (r,R)|ψ1(r; t)〉r (2.5)

The nuclei here are taken to move along a classical trajectory, so we assume that

the coordinates R and their corresponding momenta P obey Hamilton’s equations

of motion. We therefore have,

Ṗ = −∂V
eff
2

∂R
(2.6)

Ṙ =
P

µR

(2.7)

The effective potential energy for the fast moving part of the system is then ob-

tained as an average at each time over the weighted classical trajectories

V eff
1 (r; t) =

1

Nt

Nt∑
α=1

V (r,Rα(t)) (2.8)

The method ensures that each subsystem feels an averaged out force due to the

other and thus describes a ‘mean-field’ path for our system to evolve along in time.

The average path while useful in some situations describes all properties averaged
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to a single probability and cannot therefore, describe multiple state probabilities

that we expect from Quantum Mechanics.

II.2 The Meyer-Miller-Stock-Thoss (MMST) Hamiltonian

MM67 arrived at their classical model for electronic degrees of freedom in the

following way. If Vkk′(R(t)), k, k′ = 1, . . . N is the NxN diabatic electronic potential

matrix for N electronic states, where the nuclear coordinates follow some given

trajectory R(t), and the electronic wavefunction is given by an expansion in terms

of the N diabatic electronic states,

|Ψel(t)〉 =
N∑

k=1

|φk〉ck(t), (2.9)

then the time-dependent Schroedinger equation for the electronic amplitudes reads

(with ~ = 1)

iċk(t) =
N∑

k′=1

Vkk′(R(t))ck′(t) (2.10)

MM noted that if the complex-valued electronic amplitudes ck(t) were written in

terms of a magnitude and phase,

ck =

√
nk +

1

2
e−iqk (2.11)

and (nk, qk) considered to be canonically conjugate action-angle variables (gen-

eralized coordinates and momenta), then Hamilton’s equations of motion for the
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electronic action-angle variables,

q̇k =
∂Hel(n,q; t)

∂nk

ṅk = −∂Hel(n,q; t)

∂qk
(2.12)

are identical to the time-dependent Schrödinger equation of Eq. (2.10) if one defines

the classical electronic Hamiltonian as

Hel(n,q; t) =
N∑

k,k′=1

c∗k(t)Vkk′(R(t))ck′(t)

=
N∑

k=1

nkVkk(R(t)) + 2
N∑

k<k′=1

Vkk′(R(t))

√
nk +

1

2

√
nk′ +

1

2
cos(qk − qk′)

(2.13)

where the constant term 1
2

N∑
k=1

Vkk (which is independent of nk, qk) has been sub-

tracted in obtaining Eq. (2.13). When the nuclear kinetic energy, P2/2µ, is now

added to the electronic Hamiltonian of Eq. (2.13), the full classical vibronic Hamil-

tonian is then given in terms the nuclear (R,P) and electronic (n,q) coordinates

and momenta as

H(P,R,n,q) =
P2

2µ
+

N∑
k=1

nkVkk(R)

+ 2
N∑

k<k′=1

Vkk′(R)

√
nk +

1

2

√
nk′ +

1

2
cos(qk − qk′) (2.14)

MM used action-angle variables for the electronic dof because they were imple-

menting the model within the (very crude) the semi-classical procedure, whereby

the initial conditions (at t = 0) for the action variables were ni(0) = 1 for the initial
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electronic state i, nk(0) = 0 for all other states k 6= i and with all angle variables

chosen to be 2π∗ random number. The final values of the action variables resulting

from computing classical trajectories (in the full nuclear + electronic set of vari-

ables) with these initial conditions and this Hamiltonian were then histogrammed

in the typical quasi-classical procedure.

Even though MM specified initial conditions in terms of action angle variables as

noted above, they typically transformed to Cartesian ‘electronic’ variables to carry

out the calculations (because they are simpler and better behaved numerically).

Defining the electronic oscillator coordinates and momenta in the usual way,

xk =
√

2nk + 1 cos(qk)

pk = −
√

2nk + 1 sin(qk) (2.15)

the Hamiltonian of Eq. (2.14) becomes

H(P,R,p,x) =
P2

2µ
+

N∑
k=1

Vkk(R)
1

2
(p2

k + x2
k − 1)

+
N∑

k<k′=1

Vkk′(R)(pkpk′ + xkxk′) (2.16)

and this is precisely the Hamiltionian that ST68 obtained by a different, more

rigorous procedure. Furthermore, the derivation by ST makes it clear that this

model is actually an exact representation of the vibronic system so that, if the

Hamiltonian of Eq. (2.16) were taken to be a Hamiltonian operator in the usual way,

then exact vibronic dynamics would be obtained from the resulting Schrödinger
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equation. The only approximation is therefore the SC-IVR approximation for the

propagator.

An interesting observation from this classical vibronic Hamiltonian, Eq. (2.16),

concerns the force that the nuclei experience along a classical trajectory. The

Newtonian version of the classical equations of motion gives,

µR̈(t) = −
N∑

k=1

1

2
(p2

k + x2
k − 1)

∂Vkk(R)

∂R

−
N∑

k<k′=1

(pkpk′ + xkxk′)
∂Vkk′(R)

∂R
, (2.17)

or if this is expressed in terms of the original electronic amplitudes ck it reads

µR̈(t) = −
N∑

k,k′=1

c∗k
∂Vkk′(R)

∂R
ck′ , (2.18)

which is recognized to be the Ehrenfest force. The traditional Ehrenfest model

would choose initial conditions for the amplitudes as ci(0) = 1 for the initial state

i, and ck(0) = 0 for all other states much like the ‘quasi-classical’ model originally

used by MM.

For the SC-IVR , however, the initial conditions for the electronic degrees of free-

dom are specified by the initial electronic-oscillator wavefunction in coordinate

space xk. Therefore for initial electronic state i, the initial oscillator for that is one

quantum of excitation, and all the other modes k 6= i have zero quanta of excitation

(corresponding to the ground state). The initial electronic-oscillator wavefunction
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for the ith electronic state is thus

Φi(x1..xN) = φ1(xi)
N∏

k=1,k 6=i

φ0(xk)

=

√
(2)

πN/4
xie

− 1
2
x2

, (2.19)

Finally, we note that the classical vibronic Hamiltonian in Eq. (2.16) is that for the

diabatic electronic representation, and there is an analogous one for the adiabatic

representation. In terms of Cartesian coordinates and momentum of the electronic

oscillators (as in Eq. (2.16)), it is

H(P,R,p,x) =
N∑

k=1

1

2
(p2

k + x2
k − 1)Ek(R) +

|P + ∆P|2

2µ
(2.20)

where Ek(R) are the usual adiabatic, or, Born-Oppenheimer potential energy sur-

faces, and ∆P is given by

∆P =
N∑

k<k′=1

~〈ψk|
∂ψk′

∂R
〉(xkpk′ − xk′pk), (2.21)

where the electronic matrix elements in Eq. (2.21) are the usual non-adiabatic

derivative coupling.

III Applications

Calculations have been carried out for model systems consisting of 2 electronic

states and 1 nuclear degree of freedom (translation), the same kind of models Tully

used earlier for testing various surface-hopping approaches. A diabatic electron
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matrix Vnn′(R), n, n′ = 1, 2 characterizes the 2 electronic states. The overall system

thus consists of 3 degrees of freedom, for which the classical vibronic Hamiltonian

of Eq. (2.16) is

H(P,R, p1, x1, p2, x2) =
P 2

2µ
+ V11(R)

1

2
(p2

1 + x2
1 − 1) + V22(R)

1

2
(p2

2 + x2
2 − 1)

+V12(R)(p1p2 + x1x2) (3.22)

Figures 5.1 and 5.2 show the diabatic (and also the adiabatic) potential functions

for the two specific models that are treated; the specific forms of the diabatic

electronic matrix for model 1 are

V11(R) = V0tanh(aR)

V22(R) = −V0tanh(aR)

V12(R) = Ce−DR2

(3.23)

and for model 2 are

V11(R) = V1tanh(aR)

V22(R) = −V2tanh(aR); V1 >> V2

V12(R) = Ce−D(R+f)2 (3.24)

Model 1 is identical to one of the examples Tully used, and the parameters used

here are V0 = 0.01, a = 1.6, C = 0.005, D = 1. Model 2 is an asymmetric system

where one channel has a very high energetic threshold and the parameters used in
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this case are V1 = 0.04, V2 = 0.01, C = 0.005, D = 1, f = 0.7.

The quantity calculated in all cases is the probability distribution of final nuclear
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Figure 5.1: The Potential Curves in both Diabatic and Adiabatic Representation
for Model 1

translational momentum, which can be expressed as the long time limit of the A-B

correlation function of Eq. (3.8), where operator Â is the projection operator for

the initial state,

|Ψi〉〈Ψi| (3.25)

and operator B̂ is

δ(Pf − P̂ ) (3.26)
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Figure 5.2: The Potential Curves in both Diabatic and Adiabatic Representation
for Model 2

The correlation function is therefore,

C(Pf ; t) = lim
t→∞

tr
[
|Ψi〉〈Ψi|eiĤt/~δ(Pf − P̂ e−iĤt/~

]
= lim

t→∞
〈Ψi|eiĤt/~δ(Pf − P̂ )e−iĤt/~|Ψi〉 (3.27)

The initial state is chosen to be a translational coherent state (with a relatively

well-defined value of the initial translational momentum) in electronic state 1,

Ψi(x1, x2, P, R) =
(γ
π

)1/4

e−
γ
2
(R−Ri)

2

eiPi(R−Ri)

(
2

π

) 1
2

x1 e
− 1

2
(x2

1+x2
2) (3.28)

The initial position Ri is chosen well to the left of the curve-crossing region

(Ri = −5), the initial momentum is positive, with trajectories headed toward

the crossing region.
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For the LSC-IVR/classical Wigner approximation , it is necessary to calculate the

Wigner function for operator Â; this can be done analytically in this case, giving

Aw = (|Ψi >< Ψi|)w

= (2)3e−γ(R−Ri)
2

e−
1
γ
(P−Pi)

2

e−(x2
1+p2

1+x2
2+p2

2)(2x2
1 + 2p2

1 − 1) (3.29)

Operator B̂ remains unchanged under the Wigner transformation.

For the FB-IVR implementation here, we Fourier expand the delta function of

operator B̂, so that Eq. (3.27) becomes

C(Pf ; t) = (2π~)−1

∫ ∞

−∞
dR̄eiR̄.Pf /~〈Ψi|eiĤte−iP̂ R̄/~e−iĤt|Ψi〉 (3.30)

and the FB-IVR is used to evaluate P̃ (R̄)

P̃ (R̄) ≡ 〈Ψi|eiĤte−iP̂ R̄/~e−iĤt|Ψi〉

= (2π~)−F

∫
dp0

∫
dq0〈Ψi|p′

0,q
′
0〉〈p0,q0|Ψi〉

C0(q0,p0)e
iS0(q0,p0)/~ (3.31)

The FB trajectory for Eq. (3.31) begins with initial conditions (p0,q0), evolves

to time t at which the translational coordinate undergoes a jump in the nuclear

coordinate Rt → Rt + R̄ and then propagates back to time 0, (p′
0,q

′
0) being the

final values. Once P̃ (R̄) is thus calculated by this FB-IVR procedure, its Fourier
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transform gives C(Pf ; t) by Eq. (3.30)

The Exact FB-IVR expression in this case is :

C(Pf ; t) = (2π~)−F

∫
dq0

∫
dp0

∫
dq

′

t Df
t (q0,p0; γo) Db

−t(q
′

t,pt, γ
′

o) δ(p
r
t − pf )

e
i
~ St(q0,p0) e

i
~ S−t(q

′
t,pt)e

i
~pt·(q

′
t−qt) 〈Ψi|p′

o,q
′
o; γ

′
o〉 〈po,qo; γo|Ψi〉 (3.32)

The trajectory has the same forward-backward structure as in the FB-IVR case.

However, the position jump at time t is over both the nuclear and the electronic

co-ordinates.

IV Discussion

First, Figures 5.3 and 5.4 show the results of the FB-IVR and the EFB-IVR com-

pared with exact quantum results for Model 1, at two incident translational en-

ergies, 0.03 and 0.1 hartree, respectively. These distributions show two peaks at

positive momentum, corresponding to the two electronic states in which the sys-

tem may emerge. The peaks have finite width because the initial translational

wavefunction has a (small) spread in translational energy. The area under the

peaks give the transition probabilities from the initial electronic state to the two

possible final states, either for transmission (Pf > 0) or reflection ( Pf < 0). The

basic conclusion from Figures 5.3 and 5.4 is that the FB-IVR and EFB-IVR both

describe the process semi-quantitatively, with the FB-IVR showing less numerical
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noise than the EFB-IVR (at least with our present calculations).

Figures 5.5 and 5.6 show the results of the FB-IVR calculations, compared to
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Figure 5.3: Comparison of results of FB-IVR, Exact FB-IVR and exact Quantum
calculations for Model 1 with an initial energy of 0.03 Hartree

the exact quantum results, for Model 2 at the same two translational energies.

For the lower energy case Figure 5.5 the excited electronic state is energetically

forbidden (i.e., it is a closed channel) in transmission (Pf > 0) , but both states

are open for reflection (Pf < 0); the FB-IVR (and quantum result) correctly show

one peak for positive momentum and two peaks for negative momentum. And

again, the FB-IVR agrees well with the correct quantum result. At the higher en-

ergy case, shown in figure 5.6, both electronic states are open in transmission, and

one sees two peaks for positive momentum and essentially no peaks correspond-
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Figure 5.4: Comparison of results of FB-IVR, Exact FB-IVR and exact Quantum
calculations for Model 1 with an initial energy of 0.1 Hartree

ing to reflected transitions. The Figures 5.7-5.10 show the results of the classical

Wigner/LSC-IVR model, and also the standard Ehrenfest model, for models 1 and

2, for two initial nuclear translational energies, 0.03 and 0.1 hartree. One sees in

Figures 5.7 and 5.8 (Model 1) that for each energy there is only a single peak in

the translational energy distribution, clearly demonstrating that the translational

motion has emerged on an average electronic potential curve, not one curve or the

other. One also sees that the classical Wigner/LSC-IVR model is essentially the

same as the standard Ehrenfest model, the primary difference being that since the

initial conditions for the electronic variables have a distribution (the Wigner distri-

bution) in values - while there is no distribution in the initial electronic variables in
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Figure 5.5: Comparison of results of FB-IVR, Exact FB-IVR and exact Quantum
calculations for Model 2 with an initial energy of 0.03 Hartree
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Figure 5.6: Comparison of results of FB-IVR, Exact FB-IVR and exact Quantum
calculations for Model 2 with an initial energy of 0.1 Hartree
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the standard Ehrenfest model - there is a broadening in the very sharp peak given

by the Ehrenfest model. (The Ehrenfest peak is in fact a delta function, so its

width in Figures 5.7-5.10 is for visual purposes only.) Figures 5.9 and 5.10 shows

similar behavior for Model 2; here the distribution given by the classical Wigner

model is extremely broad for the lower energy case because there is a significant

probability of reflection (Pf < 0) as well as transmission. The results in Figures

5.7-5.10 verify the unphysical behavior of the Ehrenfest model, and that the LSC-

IVR/classical Wigner model is essentially equivalent to it. These shortcomings are

due to the fact that these models cannot describe quantum coherence/interference

effects, which are necessary to properly quantize the electronic degrees of freedom.

Finally, Figures 5.11 and 5.12 show FB-IVR calculations for Model 1 at the two

energies, comparing the results given by using the diabatic electronic representa-

tion (as did all calculations above) and the adiabatic electronic representation with

Hamiltonian given by Eq. (2.20). The results should of course be the same, and

within an extremely small numerical error they are.

The SC-IVR and LSC-IVR along with the MM-ST Hamiltonian have already

been shown to be useful in the study of nonadiabatic dynamics. This section suc-

cesfully shows the effectiveness of the FB-IVR, which allows us to better evaluate

quantities that involve double phase space integrals. We also further discuss the

application of the LSC-IVR and compare it favorably to the Ehrenfest model. We

also demonstrate the representation independent nature of our methods. It is im-
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Figure 5.7: Linearised IVR and Ehrenfest results for Model 1. Initial Energy =
0.03 Hartree
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Figure 5.8: Linearised IVR and Ehrenfest results for Model 1. Initial Energy =
0.1 Hartree
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Figure 5.9: Linearised IVR and Ehrenfest results for Model 2. Initial Energy =
0.03 Hartree
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Figure 5.10: Linearised IVR and Ehrenfest results for Model 2. Initial Energy =
0.1 Hartree
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Figure 5.11: Comparison of the Adiabatic and Diabatic results for Model 1, with
an initial energy 0.03 Hartree
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Figure 5.12: Comparison of the Adiabatic and Diabatic results for Model 1, with
an initial energy 0.1 Hartree
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portant to note that both the FB-IVR and LSC-IVR are feasible for extension to

multidimensional systems and in particular, the ability of FB-IVR to model nona-

diabatic dynamics almost exactly shows that there need be no compromise on the

incorporation of quantum effects in order to do so.

V Future Work

We hope to use the techniques described above to simulate the behavior of more

realistic systems. One system in particular we are looking at is the photodissoci-

ation of Na-FH into NaF + H or NaH + F. There is an avoided crossing in this

particular system and with the model potential developed and used by Truhlar et

al.70 We hope to show that the IVR can be used to predict the branching ratio.
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Chapter 6

Tuning between the Quantum and

Classical Limits of SC-IVR -

Filinov Transformation

I Introduction

In dealing with complex systems, it becomes apparent in many cases that quantum

effects are to a large extent important only for a few degrees of freedom. This

makes it hard to justify dealing with the practical difficulties of treating large

systems semiclassically in order to extract quantum effects from such a small part

of the system. There are approaches that deal with this by doing a full quantum

calculation for the relevant subsystem and treating the rest of the system classically.
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In such methods, the problem is putting these two parts together in a coherent way

to obtain information about the complete system. For instance, if we think about

this in terms of a system bath model,71 the bath has zero point energy effects that

can affect the system through coupling between these modes. There is therefore,

still virtue in doing a semiclassical simulation, but we would like to be able to

be able to control exactly how much information we extract the quantum effects

associated with the individual degree of freedom in the system.

Several exact and approximate forms of the IVR introduced to evaluate correlation

functions were described earlier. Of these, the LSC-IVR is clearly the most easy

to implement, while the EFB-IVR or the DHK-IVR are clearly the most difficult

by virtue of there ‘exact’-ness. The LSC-IVR is capable of capturing quantum

effects in a limited way; coherence and interference effects remain entirely beyond

its reach as was shown, for instance, in the chapter on nonadiabatic dynamics.

This then, would be our tool of choice when working with the bath modes of a

system-bath model, for example. While choosing the tools for the ‘system’ part, we

would go with a more exact formalism such as the EFB-IVR. The ideal approach

would allow us to do both in one calculation.

In this chapter, we describe exactly such a method. The Modified Filinov trans-

formation is applied to a DHK-IVR expression for a correlation function. We show

that the filinov parameter acts as a tuning factor such that in one limit we obtain

an LSC-IVR type of formalism and in the other limit, we obtain an EFB-IVR ex-
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pression. Using this Tuning-IVR (TIVR), we can now do exactly what we talked

about in the previous paragraph. The filinov factor appears as a diagonal matrix

whose dimensions are equal to the number of degrees of freedom in the system and

by tuning each element of the diagonal we can determine which limit we would

like to look at for the corresponding degree of freedom (or if we want to settle for

some intermediate level too.)

This idea is based on previous work done to derive a Generalized FB-IVR (GFB-

IVR)72 and is an extension of that derivation. The GFB-IVR tuned between the

FB-IVR and the DHK-IVR. In the next section we describe our approach and the

derivation of this TIVR and show its application with a 1D model and a system-

bath model.

II Theory

II.1 Modified Filinov Transformation

The modified Filinov method was originally developed to help carry out Monte

Carlo integration of Feynman path integrals.73 Here we briefly outline the details

of the method. Consider a one-dimensional integral of the form

K =
∫∞
−∞ dx eiS(x)
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We can insert unity in the form of a normalized gaussian integral

1 =

∫ ∞

−∞
dx0

√
B

2π
e−

1
2
B(x−x0)2 (2.1)

The order of integration is interchanged and we obtain

K =
∫∞
−∞ dx0

√
B
2π

∫∞
−∞ dxeiS(x)− 1

2
B(x−x0)2

The Gaussian factor makes the values of x near x0 contribute the most to the value

of the integral. This allows us to expand the function S(x) about x0 to 2nd order.

S(x) ≈ S(x0) + S ′(x0)(x− x0) + 1
2
S ′′(x0) ∗ (x− x0)

2

and the integral over x can now be carried out

K ≈ K(B) (2.2)

≡
∫ ∞

−∞
dx0e

iS(x0)

»
1− iS′′(x0)

B

–− 1
2

e
−

1
2 S′(x0)2

[B−iS”(x0)] (2.3)

In the original Filinov method B was taken to be real. The modified Filinov method

uses the fact that Eq. (2.1) is valid if B is complex and approximately true if B

is a function of x0. So we now allow B to be such a function and further make a

specific choice

B(x0) = iS ′′(x0) + c−1

where c is some constant. The equation then reduces to

K ≈ K(c) (2.4)

≡
∫ ∞

−∞
dxeiS(x) [1 + icS ′′(x)]

1
2 e−

1
2
c[S′(x)]2 (2.5)

where the integration variable has been renamed x

The Monte Carlo integration is then performed with the unnormalized sampling
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function that is in the integrand. We note that in the limit of c → ∞, the

transformation is equivalent to evaluating the stationary phase approximation to

the integral.

II.2 GFB-IVR

The Generalized FB-IVR utilizes the modified Filinov method described in the

previous section to a somewhat different end. It has also been noted that in the

limit of c → ∞ the integrand in Eq. (2.4) approaches the stationary phase limit.

We apply this idea to the double HK-IVR for a generic correlation function that

has already been described in a previous chapter. We look at the expression as

being of the form

I =
∫
dzg(z)eif(z)

where we define the vector z as a 4N-dimensional vector of form z = (q′t,p
′
t,q0,p0)

and

g(z) = Ct(p0,q0)C−t(p
′
t,q

′
t)Π

N
j=1

(γj

π

) 1
2

The phase function f(z) involves the action and the exponents of various coherent

state(s) present in the expression. We will not reproduce the GFB-IVR derivation

here since it is described in detail elsewhere.72
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II.3 A Tuning IVR (TIVR)

The procedure we follow for this derivation closely follows the derivation of the

GFB-IVR. We apply the modified filinov method to the double HK-IVR; it deviates

from the previous only in that we make sure to differentiate between the width of

the coherent state and time zero and at time t and later use this to our advantage.

This gives us,

CAB(t) =

(
1

2π~

)F ∫
dp0

∫
dq0

∫
dp′

t

∫
dq′t〈p0,q0|ψi〉〈ψi|p′

0,q
′
0〉

〈p′
t,q

′
t|pt,qt〉F (p′

t,q
′
t,pt,qt)e

i(St+S−t)CF

e−
1
2
cq(q′t−qt)

2

e−
1
2
cp(p′t−pt)

2

(2.6)

We define a few of the variables and functions that appear in our equation here.

F (p′
t,q

′
t,pt,qt) is defined as

〈p′
t,q

′
t|B̂|ptqt〉 = 〈p′

t,q
′
t|pt,qt〉F (p′

t,q
′
t,pt,qt) (2.7)

and the prefactor is defined by

CF = det

∣∣∣∣Ct(p0, q0)C−t(p
′
t, q

′
t)

(K + iJTc)

K

∣∣∣∣ 12 (2.8)

Before taking either of the Filinov parameter to its stationary phase limit, we

first go make the transformation to the EFB-IVR limit by taking γt → ∞; The
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exactness of our equation thus far does not change. We now have,

CAB(t) =

(
1

2π~

)F/2 ∫
dp0

∫
dq0

∫
dp′

t〈p0,q0|ψi〉〈ψi|p′
0,q

′
0〉F (p′

t,pt,qt)

ei(St+S−t)Ce−
1
2
cp(p′t−pt)

2

(2.9)

(We further note that since we take the limit of large γt we can assume the matrix

to be a constant and thus not worry about the order of multiplication in the

multidimensional case)

πC = det|( 1

4πγ0

[
(
−Mb

qpγ0 − iMb
pp

) (
iMf

qq + γ0M
f
qp

)
+

(
−Mb

qpγ0 − iMb
pp

) (
iγ0M

f
pp −Mf

pq

)
cp

+
(
−Mb

qqγ0 − iMb
pq

)
cp

(
−Mf

qq + iγ0M
f
qp

)
]|

1
2

We now examine both limits of the filinov parameter in 1D for simplicity.

First, the limit cp → 0. The momentum jump at time t can have any values

effectively since it is described by a gaussian of infinite width. The expression for

the correlation function reduces to the EFB-IVR expression :

CAB(t) =

(
1

2π~

)F/2 ∫
dp0

∫
dq0

∫
dp′

t〈p0,q0|ψi〉〈ψi|p′
0,q

′
0〉

F (qt)e
i(St+S−t)Df (2.10)

where we have also made the further assumption (only in the interests of simplicity)

that operator B is a function of only position space operator. The prefactor Df is

now

Df =

(
1√
2π

(
−iγ0M

b
qp + Mb

pp

)) 1
2
(

1√
2π

(
1

γ0

Mf
qq − iMf

qp)

) 1
2

(2.11)
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Now lets look at the other limit (the stationary phase limit as defined before) where

cp →∞.

CAB(t) =

(
1

2π~

)F/2 ∫
dp0

∫
dq0 〈p0,q0|ψi〉〈ψi|p′

0,q
′
0〉

F (qt)e
i(St+S−t)Cfull

HK (2.12)

In this limit, we note that the Filinov parametrized gaussian is reduced to a delta

function

lim
cp→∞

e−
1
2
cp(p′t−pt)2 = δ(p′

t − pt)

(
2π

cp

) 1
2

(2.13)

The prefactor here is called Cfull
HK by which we mean that the monodromy matrices

that we evaluate are of the form Mfull
pp =

∂p′0
∂p0

and so on. Further we note that

the coherent state limit set the position jump to zero and when the gaussian in

momentum jump is reduced to a delta function, we no longer have a position jump

either. Physically, we see that the trajectory that goes forward is identical with

the backward trajectory; the action exactly cancels and the monodromy matrices

at time t are identical with their values at time zero, so the prefactor is just 1.

This further reduces our expression for the correlation function down to the form

CAB(t) =

(
1

2π~

)F/2 ∫
dp0

∫
dq0 |〈p0,q0|ψi〉|2 F (qt)

This expression looks a lot like the LSC-IVR formulation, except instead of the

sampling being done with a Wigner distribution of initial states we have a Husimi

distribution.
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III Applications

In order to best showcase the properties of this TIVR we choose to first study

a simple 1D system where there is an clear distinction between its behavior in a

classical simulation and a quantum one. Once the effectiveness of this method

in going between the two limits has been established, we move on to looking at

a system-bath model which can demonstrate the ability of this system to extend

itself to more degrees of freedom.

III.1 Anharmonic Oscillator

We look at the way the average position changes in time for an anharmonic oscil-

lator. Initially, the ’exact’ or ’quantum’ time evolution follows the classical time

evolution. However, the wavepacket begins to splits and dephase due to the anhar-

monicity and in time there is rephasing of the wavepacket to varying degrees. The

dephasing and rephasing of the wavepacket can be seen by studying the change in

average position with time. The correlation function for this property is based on

the Eq. (3.8) where the operator A is a projection operator,

Â = |ψi〉〈ψi| (3.14)

Operator B is the position operator x̂.

The correlation function is, thus of the form

CAB(t) = 〈ψi|eiĤt/~x̂e−iĤt/~|ψi〉 (3.15)
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The Hamiltonian takes the form

Ĥ =
p2

2m
+

1

2
ω2x2 + ax3 + bx4 (3.16)

where we choose

a = −0.1 and b = 0.1 and w =
√

(2)

The reference state is chosen to be the shifted ground state of the corresponding

harmonic oscillator.

〈x|ψi〉 =
(γ
π

)
e−

γ
2
(x−1)2 (3.17)

The width of the coherent state is chosen to be such that γ = ω.

III.2 System-Bath Model

We now couple this anharmonic oscillator to a 30-dimensional bath of harmonic

oscillators in an effort to see the beginnings of dissipation effects.74 The bath

frequencies and coupling constants are distributed according to an Ohmic spectral

density. The discretization of the spectral density function is carried out by a

procedure described previously.75

The bath is characterized by its spectral density

J(ω) =
π

2

∑
j

κ2
j

ωj

δ (3.18)

which is chosen to be in Ohmic form

J(ω) = ηωe−ω/ωc (3.19)
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The cut-off frequency is chosen to be ωc = ω and the maximum bath frequency is

chosen to be wmax = 2ωc. We also do the simulation in the weak coupling region

where η = 0.1

III.3 Tracking the Prefactor

It is worth discussing briefly what is involved in tracking the prefactor in Eq. (2.10).

There is a difference between this and the other prefactors in the sense that we can

no longer separate the monodromy matrices for the forward and backward trajec-

tories. For instance, in Eq. (2.11) the two parts of the prefactor (the forward and

the backward) can be calculated separately and tracked separately and then put

together for the overall prefactor. In this case the prefactor is not really separable

in that convenient way, so the procedure to evaluate this is a little more compli-

cated. In the interests of storing as little information as possible, the method we

use is as follows

First, the forward trajectory is evaluated in short time steps of dt with the trajec-

tory variables all stored at the end of the time evolution so that it can be used as

the starting point for the next forward time evolution by dt. Next, the backward

trajectory is started at time n.dt and evolved back in time to zero. By combin-

ing the Monodromy matrices for the backward trajectory with the forward stored

matrices, we can calculate and track the prefactor.
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In terms of the Maslov index, one further computational detail is to be noted. In

the limit cp → 0, we know that the prefactor must reduce to the EFB-IVR limit.

However, since we count the branch cuts for the non-separable form we will not

necessarily end up with an identical solution. In order to ensure that the limits

work properly, one trick we can use is to simply track the components of the EFB-

IVR prefactor and use the Maslov index obtained in this way with the Filinov

parametrized prefactor. While this is exact in the one limit and irrelevant in the

other limit, there is some ambiguity as to the validity of this procedure when cp

lies somewhere in between. This is something we hope to further investigate.

IV Discussion

The results obtained thus far are promising, but we note that this work is ongoing

and therefore none of the figures are in a final form.

For the anharmonic oscillator, we show the results of an exact (DVR) calculation

in Figure 6.1 and compare that with the DHK-IVR and the EFB-IVR. It is clear

that the EFB-IVR does not seem to be able to capture the quantum recurrences

in the average position with time; however, there appears to be a loss of amplitude

somewhat faster than expected and therefore smaller recurrences. To check the

accuracy of our EFB-IVR we compare it with the DHK-IVR result where γt is set

to a large number. We definitely start to see some decrease in the amplitude of
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Figure 6.1: Comparison of the position correlation function for an Anharmonic
oscillator obtained using DHK-IVR, EFB-IVR and the exact DVR

the oscillation even at short times in both cases as shown in figure Figure 6.2. In

Figure 6.3 we show the results of tuning cp - and compare how well the different

values capture quantum effects. In comparing the results of this calculation with

the EFB-IVR we note that it does just as well if not mildly better - this is exactly

what we want. The other limit of the calculation is the ‘classical’ limit and in

figure Figure 6.4 we compare the large cp limit with a LSC-IVR calculation. The

results show that while the behavior is well mimicked, there is still a puzzling fall

off in the amplitude which needs further investigation.

We also show the results for a system bath calculation in the limits of cp in Figure

6.5. The recurrence effects seem to be well captured in the limit of cp being small
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Figure 6.2: Examining the γt → ∞ limit of the DHK-IVR with the EFB-IVR
calculation.

0 10 20 30 40 50 60 70
time (t)

-0.5

0

0.5

<
x>

(t
)

EFB-IVR
cp = 0.01

Figure 6.3: The Quantum limit of TIVR - comparing the cp → 0 limit with the
EFB-IVR
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Figure 6.4: The classical limit of the TIVR - contrasting the LSC-IVR result with
the limit cp →∞.

and the problem of a unusually rapid decay in the amplitude of the oscillations

appears to be mitigated in this case.

V Future Work

A closer study is needed to make sure that our prefactor tracking technique is

indeed legitimate.

One concern with the derivation itself is regarding taking the limits in a multi-

dimensional case. The 1D case is straightforward and merely extending the idea

implies that it works the same in higher dimensions, however proving this mathe-
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Figure 6.5: The position correlation for an anharmonic system coupled to 10 har-
monic bath modes; The limits of a large and a small value of cp are compared.

matically is somewhat trickier.

We would like to understand the physical reasons for the discrepancy between the

EFB-IVR and the DHK-IVR which formally at least are equally exact.

Finally, once these details have been ironed out, we would like to study other

system bath models which are used to study reaction mechanisms such as proton

transfer.
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Chapter 7

The Semiclassical Prefactor -

Exploring Alternate Evaluation

Methods

I Introduction

Semiclassically, the ultimate goal is to make quantum effects accessible to the

Molecular Dynamics community with very little extra effort. The formulation of

the SC-IVR for the most part makes use of information obtained from classical

trajectories. However, we do require on additional piece of information and this

is the Hessian Matrix. Many standard dynamics packages do not provide this

de-facto.
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The prefactor in the SC-IVR expression is composed of various Monodromy ma-

trices. The time evolution equations of these matrices involves the Hessian. The

obvious way to remove the need for the Hessian is to eliminate the prefactor al-

together, like in the LSC-IVR. However, this also reduces the methods ability to

capture quantum coherence effects although it can still describe some tunneling

and zero point energy effects. Another method to work around needing the Hes-

sian was introduced by Light et al76 where a finite difference scheme (in position

and momentum) is proposed to evaluate the Monodromy matrices directly at each

time step and by using only the unitarity property of these matrices to carry out

time evolution. This is discussed in more detail in the next section.

In this chapter we describe a method to obtain the Hessian by doing a finite

difference calculation in time. The idea of such a finite difference is appealing

because we have time step information for each trajectory and will therefore, need

to do no extra work at all. A near exact scheme is drawn up to accurately calculate

the value at each time step and then modified to an approximate scheme with an

approximate prefactor that will ideally retain enough accuracy to allow us to obtain

quantum effects; This work is ongoing and some preliminary results are shown to

describe the progress made so far in documenting the success of this idea.
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II Theory

II.1 Semiclassical Prefactor

In this first part of the theory section the semiclassical prefactor is described in

some detail. The prefactor term in the IVR expression for the time propagator cap-

tures the interference between secondary trajectories that are quadratically close

to the classical trajectory The expression involves monodromy matrix elements,

whose time evolution equations are as follows.

Ṁqq = Mpq

Ṁqp = Mf
pp

Ṁpq = − ∂2V

∂q∂q
Mqq

Ṁpp = − ∂2V

∂q∂q
Mqp

The prefactor (for the HK-IVR) takes the form

Ct(p0, q0) = det
∣∣Mqq + γ−1Mppγ − i~Mqpγ

−1 + i
~γ

−1Mpq

∣∣ 12
Time evolution of the prefactor involves using the Hessian as well as taking the

square root of the resulting complex number. The square root function for a

complex number has a branch cut across the negative real axis, so in order to

ensure proper continuity in time, we need to track the number of times the value

crosses this branch cut. This is relevant to our discussion because this means that
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we need to check for the branch crossing at regular, relatively small time intervals

which makes it necessary to also evaluate the Hessian at each of these time steps.

II.2 Log-Derivative Method

The log-derivative method described in56 is primarily introduced as a way to make

the evaluation of the prefactor easier. The prefactor in this case is shown to be

Ct =

√(
det[

1

2
(1 +

i

~
γ−1Rt]

)
e

1
2

R t
0 dt′Tr(R′

t) (2.1)

where the matrix Rt is defined as

Rt = Q̇tQ
−1
t (2.2)

The Q matrix and its time derivative are

Q = Mqq +
~
i
Mqpγ

Q̇ = Mpq + γ−1Mppγ (2.3)

It is pretty clear that these two matrices combined form the prefactor defined by

Eq. (2.1). The reason for the name ’log-derivative’ is also clear from the definition

of Rt since

Rt =
∂logQ

∂t
= Q̇tQ

−1
t (2.4)

In practice, the time evolution of R starts with initial condition

R0 =
~
i
γ (2.5)
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and the equation of motion that it obeys is

Ṙt = − ∂2V

∂q∂q
−R2

t (2.6)

The prefactor has a branch cut discontinuity when the real part becomes nega-

tive and the imaginary part goes through zero. It has been that the branch cut

conditions for a prefactor of the form in Eq. (2.1) correspond to

1 +
1

M2
qq + (~γ)M2

qp

< 0 (2.7)

MpqMqq = −(~γ)2MpqMqp (2.8)

In one-dimension, the condition in Eq. (2.7) is never true since the left hand side is

always positive; this means that the prefactor simply does not have a branch cut.

In multidimensional problems, this is not as immediately obvious. Several systems

were tested and it seems likely (although not a rigorous truth) that a negative

real part occurring in conjunction with a vanishing imaginary part is an unlikely

scenario.

An approximation to the exact prefactor in Eq. (2.1) can be made by assuming

that the matrix Rt is slowly varying, or in other words, by setting

Ṙt = 0 (2.9)

This leads to Johnson’s multichannel WKB prefactor which has the form

Ct ≈ e

− i
~

R t
0 dt′

N∑
j=1

1

2
~ωj(t

′)

(2.10)
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where ωj(t
′)2 are the eigenvalues of the Hessian matrix.

In the next few sections of this chapter, we describe methods to obtain the Hessian

by finite difference and use this, in some cases, approximate Hessian to obtain the

prefactor either with the log derivative or even the WKB method. While such a

procedure will definitely be non-exact, there is still a high likelihood that it will

prove a good enough to still capture quantum effects such as coherence.

II.3 Finite Difference - Light Method

The stability matrix M(t1, t2) of a given trajectory is the jacobian of the trans-

formation from the point (q1,p1) at t1 to (q2,p2) at time t2 under the system

Hamiltonian Ĥ. The stability matrix is composed of monodromy matrices in the

form

M(t1, t2) =

 ∂p2

∂p1

∂p2

∂q1

∂q2

∂p1

∂q2

∂q1

 (2.11)

This stability Matrix time evolves as per the equation

M(t1, t2)

dt
=

 0 ∂2H
∂q∂q

∂2H
∂p∂p

0

M(t1, t2) (2.12)

The Unitarity property of the stability matrix allows the use of the chain rule,

which gives us

M(t3, t1) = M(t3, t2).M(t2, t1)) (2.13)
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where M(t, t′) indicates the monodromy matrix for time evolution between time t′

and t. This property allows us to start with initial conditions for the matrix M at

any intermediate time.

At each time, there is a central trajectory

z0(t) = q1(t),q2(t), . . . ,qN(t),p1(t),p2(t), . . . ,pN(t) (2.14)

At each time, a partial differentiation is performed numerically. In order to do

this, an additional 2N trajectories are propagated, with initial conditions that

differ from z0(t) by a small displacement in one of the variables.For instance,

z1(t) = q1(t) + ∆q1, q2(t), . . . , qN(t), p1(t), p2(t), . . . pN(t)

zN+1(t) = q1(t), q2(t), . . . , qN(t), p1(t) + ∆p, p2(t), . . . pN(t) (2.15)

z2N(t) = q1(t), q2(t), . . . qN(t)p1(t), p2(t), . . . pN(t) + ∆p

The elements Mij of the matrix M are then given by

Mij =
∂zi(t+ ∆t)

∂zj(t)

=
zi

j(t+ ∆t)− zi
0(t+ ∆t)

∆zj

This methods has proven to be quite accurate and by decreasing the size of the

time steps or by using 4N trajectories with displacements ±∆q
2

and ±∆p
2

which
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will allows us to use a central difference scheme for the derivatives. The main

advantage of this method is that there is no longer any need for the Hessian.

The drawbacks is the number of additional trajectories required at every time step.

We would like a method that has all the advantages of the current one and one

more - the fact that no extra trajectories are required.

II.4 Finite Difference in Time

As described in the previous section, the Light method is one way to obtain the

Monodromy matrices in time and hence the prefactor without any need for the

Hessian. Our current task is to describe another such finite difference scheme, but

instead of the Monodromy matrices, we look at obtaining the Hessian.

Consider the equation for time evolution of momentum

ṗ =

(
−dV
dq

)
(2.16)

We can now take the time derivative of both sides of the equation

∂2p

∂t∂t
= −

(
∂2V

∂q∂q

)
q̇ (2.17)

We can substitute this for

q̇ =
∂H

∂p
=

p

m
(2.18)

This makes our exression

∂2p

∂t∂t
= −

(
∂2V

∂q∂q

)
p

m
(2.19)
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This is the final expression we will be working with. It resembles a standard matrix

equation, but with one twist that makes things harder! A regular matrix equation

takes the form,

A~x = ~y (2.20)

where A is a matrix and the others are vectors. In such an expression, ~x is usually

the unknown. This means that to solve the equation, we simply invert matrix A

and evaluate

~x = [A]−1~y (2.21)

In the case of the Hessian, however, the matrix ∂2V
∂q∂q

is the unknown. Solving the

equation for the matrix, is somewhat more complicated!

We consider two ways to work around this. One way is to do some kind of Singular

Value Decomposition (SVD) which effectively gives us the eigenvalues that can then

be used to find the inverse rectangular matrix (i.e. a vector ~x!). While SVD is

quite effective in some cases, it is clear that here we simply do not have enough

information to fully obtain all the elements of the Hessian matrix with any degree

of accuracy.

The other approach is to construct ~x and ~y such that they are actually matrices

not vectors and therefore invertible! The matrix form of ~x is simply a matrix

of the positions at consecutive time steps. If we store the position at as many

different time steps as there are degrees of freedom, we have a square matrix that

is invertible as long as its determinant is non-zero.
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One assumption that is built into such a procedure is that the Hessian is constant

over the time steps which we use to construct our matrix. Clearly, for systems with

many degrees of freedom, the approximation will begin to break down if we have

to use a correspondingly large number of time steps. So we look around for some

way to reduce the number of time steps used in constructing the matrix while still

being able to determine the Hessian

With this in mind, we start by looking at the simplest case where the Hessian is

diagonal. Our matrix equation can now be written as

N∑
k′=1

Akk′xk′i = yki (2.22)

if Akk′ = akk′δkk′ then the equation reduces to

akkxki = yki which is a really simple equation to solve for akk.

We can look at a less extreme case where the Hessian is block diagonal and there

are M near-diagonals that have non-zero elements other than the primary diagonal.

We can treat such a case in a fashion similar to the pure diagonal case

k+M∑
k′=k−M

Akk′xk′i = yki (2.23)

The values of k′ in this case run from k −M to k + M , a total of 2M + 1 values

and i represents the ith degree of freedom.

For a given value of k, Akk′ is a vector of length 2M + 1 and if we choose the same

number of values for i the x matrix is then square and yki is a vector. The solution,
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is then ,

Akk′ =
N∑

i=1

yki(x
−1)ik′ (2.24)

where we simply invert the 2M + 1 dimensional x matrix which will in general be

less than N if our Hessian is block diagonal in nature.

III Discussion

We start studying our new technique with the easiest model - the 1D case is trivial

and exact. This is a good way to check how well our technique does with the

assumption that the Hessian is constant over a finite period of time. We study a

Morse potential of the form,

ĤMO =
1

2
p2 +D(e−2αq − 2e−αq) (3.25)

The parameters chosen are α = 0.67au−1 and D = 4au. The initial condition for

the trajectory are chosen to be q0 = −0.35au and p0 = 0.

As expected, our results are near exact for the prefactor and careful testing shows

that in this case at least, the size of the time step over which the Hessian is assumed

to be constant can be several times the trajectory time step Figure 7.1 shows the

HK-IVR prefactor obtained from an analytically calculated Hessian compared with

one calculated from a finite difference Hessian and a log-derivative prefactor that

also used the calculated Hessian. We now move on to our next testing grounds

- a 2D model that consists of two linearly coupled anharmonic oscillators. The
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Figure 7.1: The prefactor for a simple 1D Morse potential; the red line is the
HK prefactor with an analytic Hessian; the blue and green dotted lines are the
log-derivative and HK prefactors respectively with a finite difference Hessian.
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potential is of the form

V (x1, x2) =
1

2
(x2

1 + x2
2) +

1

4
(x4

1 + x4
2) + x1x2 (3.26)

This potential is chosen as a good balance between sufficiently anharmonic to

provide a challenge and smooth enough to make the slowly varying Hessian ap-

proximation reasonable.

Figures 7.2 and 7.3 compare the diagonal and off-diagonal elements of the two

dimensional Hessian. To understand this, we look at a 1D version and note

Figure 7.2: Comparing the diagonal elements of the analytic(red) Hessian and the
finite difference (green) Hessian.

that we see similar behavior in the Hessian. The calculated Hessian mimics the
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Figure 7.3: Comparing the off-diagonal elements of the analytic(red) Hessian and
the finite difference (green) Hessian.

analytical Hessian for the most part, but at various points we encounter what

appear to be points of near-singularity.

These actually arise from the momentum values becoming small. In 1D this prob-

lem is somewhat mitigated by the fact that we are dividing two small numbers and

hence the Hessian does not become too large as shown in Figure 7.4 This is actually

something we believe we can successfully work around now that the problem has

been identified (literally, by stepping over these points!). In many dimensions, the

relevant quantity to watch for is the determinant of the matrix to be inverted.
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Figure 7.4: The momentum, the second derivative of the momentum in time and
the force constant along the course of the trajectory

One last calculation we describe here is the use of the finite difference scheme with

the WKB approximation for the prefactor. We wish to investigate this combination

specifically because if successful, we have worked around both the computational

difficulties associated with the calculation of the prefactor. Namely, we will not

require the Hessian and we will not have to track the Maslov Index.

We do this calculation for a rather more anharmonic Morse potential as a tough

case. The potential is of the form

V (x) = D(1− eλx)2 (3.27)

and the parameters are D = 30a.u. and λ = 0.08a.u. We also use a more excited

state wavefunction in the HK-IVR calculation with a coherent state width γ = 12.
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The autocorrelation function for such a morse potential is calculated and we com-

pare the exact results with the WKB results obtained both by using the analytic

Hessian for the prefactor and our finite difference scheme for the prefactor. The re-

sults are shown in Figure 7.5. We see that the WKB is not very accurate here, the

results being lower than expected, however there is little to choose between using

the analytic Hessian and the Finite difference Hessian which, again, was expected

in a one-dimensional model.

Figure 7.5: The autocorrelation function using the regular HK-IVR prefactor,
and the WKB prefactor calculated with the analytic Hessian(black) and the finite
difference Hessian (red).
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IV Future Work

Work is currently underway on several fronts here. We believe that this method is

most promising and are investigating several variants on this, including carrying

out a finite difference in the position along the trajectory by merely storing three

steps at a time.

We are also on the lookout for a realistic system with a block diagonal Hessian

that we can try the equations described for just such as case Eq. (2.24).
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Chapter 8

Conclusion

In this chapter we summarize the work described in the previous chapters to gain a

little perspective on the goals of this body of research. Semiclassical methods such

as the IVR possess the great advantage of being rigorously derivable and therefore

provide a solid foundation which we can then improve upon or approximate as per

our needs. In the context of modern research, despite the fact that there are many

things we do not still understand about small molecules and gas phase dynamics,

interest is definitely shifting towards understanding larger, more complex molecules

and condensed phase dynamics. The SC-IVR can, in theory, describe this entire

range of dynamics but several practical problems begin to play up as soon as we

move to higher dimensional systems.

The sign problem arising due to the oscillatory nature of the integrand is one.

In this thesis, the TIVR addresses this problem. The solution proposed is to
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choose only a few degrees of freedom which will contribute to the oscillatory nature

of the integrand and let all the others cancel out exactly. The action term in

the exponent is the sum of the forward and backward contributions and in the

classical limit simulation these will be identical. In essence the classical limit

of the Filinov parameter corresponds (as described before) to a stationary phase

approximation. We believe that this methodology will help minimize the sign

problem since entirely eliminating the phase factor (as we do in the LSC-IVR)

means foregoing all coherence effects.

Another problem is the computational cost that comes with scaling up. Calculating

the prefactor is a major bottleneck as described in the previous chapter. The

‘dream team’ solution here would be if we could compute the Hessian with only the

standard, existing classical trajectory information and then use the log-derivative

or the somewhat cruder WKB approximation for the prefactor to avoid tracking

the Maslov index. We are currently investigating several such avenues.

We now move on to the more application oriented parts of this thesis. It has

been shown that the IVR formalism lends itself to the accurate calculation of

energy eigenvaluse, although the implementation needs refinement. Nonadiabatic

dynamics are becoming more and more important in the modern context. It is

clear that curve crossings and conical intersection are the norm rather than the

exception and being able to build a consistent dynamic model to deal with such

events is very important. We believe that the MMST hamiltonian in conjunction



139

with the FB-IVR is just such a method.

Finally, we describe an algorithm to improve the implementation of the IVR. We

show clearly, where time independent sampling falls short in evaluating long time

dynamics of a system. Time dependent sampling is usually avoided because of the

high cost involved and in the case of parallel computing the high communication

needed between processors. We describe a scheme that addresses and somewhat

mitigates both problems. The only additional work lies in running a pure classical

trajectory simulation over and above the usual one. As far as communication

requirements, the sampling algorithm is such that there is no need for the different

processors to compare notes, all the information required is locally available in the

form of the classical trajectories run on each individual processor.

Refinements such as the ones described here and elsewhere are part of the ongoing

process to make semiclassical methods a viable tool to study and predict the dy-

namics in complex systems to a hight degree of accuracy. The extra insight that

one gets from looking at quantum effects from the viewpoint of a classical limit

theory also makes it important to continue work in this area.
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Giménez, and William H. Miller. Semiclassical description of quantum co-

herence effects and their quenching: A forward–backward initial value repre-

sentation study. J. Chem. Phys., 114(6):2562–2571, 2001.



145

[39] X. Sun, H. Wang, and W.H. Miller. On the semiclassical description of quan-

tum coherence in thermal rate constants. J. Chem. Phys., 109:4190, 1998.

[40] X. Sun, H. Wang, and W.H. Miller. Semiclassical theory of electronically

nonadiabatic dynamics: Results of a linearized approximation to the initial

value representation. J. Chem. Phys., 109:7064, 1998.

[41] W.H. Miller. Generalization of the linearized approximation to the semiclassi-

cal initial value representation for reactive flux correlation functions. J. Phys.

Chem. A, 103(47):9384–9387, 1999.

[42] E. Pollak and J.L. Liao. A new quantum transition state theory. J. Chem.

Phys., 108:2733, 1998.

[43] J.A. Poulsen, G. Nyman, and P.J. Rossky. Practical evaluation of condensed

phase quantum correlation functions: A Feynman–Kleinert variational lin-

earized path integral method. J. Chem. Phys., 119:12179, 2003.

[44] William H. Miller. TEX: Eigenvalues and Reaction Rate Constants, volume

Recent Developments in Semiclassical Mechanics of The New World of Quan-

tum Chemistry. D.Reidel Publishing Co., Dordrecht, Netherlands, 1976.

[45] Sally Chapman, Bruce C. Garrett, and William H. Miller. Semiclassical eigen-

values for nonseparable systems: Nonperturbative solution of the hamilton–



146

jacobi equation in action-angle variables. J. Chem. Phys., 64(2):502–509,

1976.

[46] Ronnie Kosloff. Time-dependent quantum-mechanical methods for molecular

dynamics. J. Phys. Chem., 92(8):2087–2100, 1988.

[47] William H. Miller Srihari Keshavamurthy. Semiclassical correction for

quantum-mechanical scattering. Chem. Phys. Lett., 218(3):189–194, 1994.

[48] E. Merzbacher. Quantum mechanics. Wiley [New York, 1998.
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